Issues of using modern organic reagents in the practice of drinking water supply (literature review)
- Авторлар: Alekseeva A.V.1, Savostikova O.N.1
-
Мекемелер:
- Centre for Strategic Planning and Management of Biomedical Health Risks of the FMBA
- Шығарылым: Том 102, № 10 (2023)
- Беттер: 1029-1034
- Бөлім: ENVIRONMENTAL HYGIENE
- ##submission.datePublished##: 24.11.2023
- URL: https://ruspoj.com/0016-9900/article/view/638312
- DOI: https://doi.org/10.47470/0016-9900-2023-102-10-1029-1034
- EDN: https://elibrary.ru/ciycok
- ID: 638312
Дәйексөз келтіру
Толық мәтін
Аннотация
The article contains a literature review devoted to the safe use of modern organic reagents in drinking water supply practice. When conducting a literature search, the following databases were used as follows: Pubmed, Scopus, Web of Science, MedLine, Global Health, RSCI, as well as a search method based on keywords and citations. The purpose of the review is that despite the large number of developed technologies and various reagents, the problem of removing anthropogenic and anthropogenic pollutants from natural water purification cannot be considered to be solved. Water purification technologies are being improved; their effectiveness largely depends on the intensification of reagent treatment.
In addition to generally accepted laboratory studies of the reagents used in water treatment, it is necessary to conduct production tests to clarify the parameters of the health risk and toxicity of the transformation products formed during the water treatment process, as well as to study the effectiveness and safety of a set of reagents that together enter the water treatment process. The hygienic assessment of reagents should take into account the actual conditions of their use in drinking water supply practice, including further stages of water treatment. This concerns the assessment of the possible destruction of polymers during the production of composite reagents, the assessment of modifying additives included in their composition, the transformation of polymers in water during chlorination, chloramination, ozonation, under the influence of ultraviolet irradiation, and adjustment of a set of mandatory controlled indicators. To conduct these studies, laboratories must have publicly available analytical methods that allow accurately determining the presence of monomers, polymers, as well as various additives and transformation products in concentrations actually present in drinking water.
Contribution:
Alekseeva A.V. – the concept and design of the study, writing the text, collecting material and processing data, editing;
Savostikova O.N. – concept and design of the study, writing the text, collecting material and processing data, editing.
All authors are responsible for the integrity of all parts of the manuscript and approval of the manuscript final version.
Conflict of interest. The authors declare no conflict of interest.
Acknowledgement. The study had no sponsorship.
Received: August 28, 2023 / Accepted: September 26, 2023 / Published: November 20, 2023
Негізгі сөздер
Авторлар туралы
Anna Alekseeva
Centre for Strategic Planning and Management of Biomedical Health Risks of the FMBA
Хат алмасуға жауапты Автор.
Email: AAlekseeva@cspmz.ru
ORCID iD: 0000-0002-0422-8382
MD, PhD, Head of the Hygiene Department of the Centre for Strategic Planning of FMBA of Russia, Moscow, 119121, Russian Federation.
e-mail: AAlekseeva@cspmz.ru
РесейOlga Savostikova
Centre for Strategic Planning and Management of Biomedical Health Risks of the FMBA
Email: OSavostikova@cspmz.ru
ORCID iD: 0000-0002-7032-1366
Кандидат медицинских наук, начальник отдела физико-химических методов исследования и экотоксикологии, ФГБУ «ЦСП» ФМБА России, 119121, г. Москва, ул. Погодинская, д. 10, стр. 1, Россия
e-mail: OSavostikova@cspmz.ru
РесейӘдебиет тізімі
- Ouyang W., Chen T., Shi Y., Tong L., Chen Y., Wang W., et al. Physico-chemical processes. Water Environ. Res. 2019; 91(10): 1350–77. https://doi.org/10.1002/wer.1231
- Xue J., Guo B., Gong Z. Physico-chemical processes. Water Environ. Res. 2018; 90(10): 1392–438. https://doi.org/10.2175/106143018X15289915807263
- Veytser Yu.I., Mints D.M. High-Molecular Flocculants in the Processes of Natural and Wastewater Treatment [Vysokomolekulyarnye flokulyanty v protsessakh ochistki prirodnykh i stochnykh vod]. Moscow: Stroyizdat; 1984. (in Russian)
- Zapol’skiy A.K., Baran A.A. Coagulants and Flocculants in Water Purification Processes: Properties. Receiving. Application [Koagulyanty i flokulyanty v protsessakh ochistki vody: Svoystva. Poluchenie. Primenenie]. Moscow: Khimiya; 1987. (in Russian)
- Yu X., Tang Y., Pan J., Shen L., Begum A., Gong Z., et al. Physico-chemical processes. Water Environ. Res. 2020; 92(10): 1751–69. https://doi.org/10.1002/wer.1430
- Mishra S., Mukul A., Sen G., Jha U. Microwave assisted synthesis of polyacrylamide grafted starch (St-g-PAM) and its applicability as flocculant for water treatment. Int. J. Biol. Macromol. 2011; 48(1): 106–11. https://doi.org/10.1016/j.ijbiomac.2010.10.004
- Chen J., Eraghi Kazzaz A., AlipoorMazandarani N., Hosseinpour Feizi Z., Fatehi P. Production of flocculants, adsorbents, and dispersants from lignin. Molecules. 2018; 23(4): 868. https://doi.org/10.3390/molecules23040868
- Rajala K., Grönfors O., Hesampour M., Mikola A. Removal of microplastics from secondary wastewater treatment plant effluent by coagulation/flocculation with iron, aluminum and polyamine-based chemicals. Water Res. 2020; 183: 116045. https://doi.org/10.1016/j.watres.2020.116045
- Zheng C., Zheng H., Wang Y., Sun Y., An Y., Liu H., et al. Modified magnetic chitosan microparticles as novel superior adsorbents with huge “force field” for capturing food dyes. J. Hazard. Mater. 2019; 367: 492–503. https://doi.org/10.1016/j.jhazmat.2018.12.120
- Can İ.B., Bıçak Ö., Özçelik S., Can M., Ekmekçi Z. Sulphate removal from flotation process water using ion-exchange resin column system. Minerals. 2020; 10(8): 655. https://doi.org/10.3390/min10080655
- Wang Q., Cao Y., Zeng H., Liang Y., Ma J., Lu X. Ultrasound-enhanced zero-valent copper activation of persulfate for the degradation of bisphenol AF. Chem. Eng. J. 2019; 378: 122143. https://doi.org/10.1016/j.cej.2019.122143
- Lin Z., Wang Y., Huang W., Wang J., Chen L., Zhou J., et al. Single-stage denitrifying phosphorus removal biofilter utilizing intracellular carbon source for advanced nutrient removal and phosphorus recovery. Bioresour. Technol. 2019; 277: 27–36. https://doi.org/10.1016/j.biortech.2019.01.025
- Fu W., Zhang W. Microwave-enhanced membrane filtration for water treatment. J. Memb. Sci. 2018; 568: 97–104. https://doi.org/10.1016/j.memsci.2018.09.064
- Salehizadeh H., Yan N., Farnood R. Recent advances in polysaccharide bio-based flocculants. Biotech. Adv. 2018; 36(1): 92–119. https://doi.org/10.1016/j.biotechadv.2017.10.002
- Samburskiy G.A., Ustinova O.V., Leont’eva S.V. Specific features of standardization of chemicals for the preparation of drinking water (through the example of polyaluminium chloride coagulant). Vodosnabzhenie i sanitarnaya tekhnika. 2020; (1): 15–21. https://doi.org/10.35776/MNP.2020.01.02 https://elibrary.ru/kophvn (in Russian)
- Koshani R., Tavakolian M., van de Ven T.G.M. Cellulose-based dispersants and flocculants. J. Mater. Chem. B. 2020; 8(46): 10502–26. https://doi.org/10.1039/d0tb02021d
- Xu M., Wang X., Zhou B., Zhou L. Pre-coagulation with cationic flocculant-composited titanium xerogel coagulant for alleviating subsequent ultrafiltration membrane fouling by algae-related pollutants. J. Hazard. Mater. 2021; 407: 124838. https://doi.org/10.1016/j.jhazmat.2020.124838
- Zhang P., Zhu S., Xiong C., Yan B., Wang Z., Li K., et al. Flocculation of Chlorella vulgaris-induced algal blooms: critical conditions and mechanisms. Environ. Sci. Pollut. Res. Int. 2022; 29(52): 78809–20. https://doi.org/10.1007/s11356-022-21383-8
- Wang Y., Gao B., Yue Q., Zhan X., Si X., Li C. Flocculation performance of epichlorohydrin-dimethylamine polyamine in treating dyeing wastewater. J. Environ. Manage. 2009; 91(2): 423–31. https://doi.org/10.1016/j.jenvman.2009.09.012
- Zhu G., Liu J., Bian Y. Evaluation of cationic polyacrylamide-based hybrid coagulation for the removal of dissolved organic nitrogen. Environ. Sci. Pollut. Res. Int. 2018; 25(15): 14447–59. https://doi.org/10.1007/s11356-018-1630-1
- Liao Y., Zheng H., Dai L., Li F., Zhu G., Qingqing G., et al. Hydrophobically modified polyacrylamide synthesis and application in water treatment. Asian J. Chem. 2014; 26(18): 5923–7. https://doi.org/10.14233/ajchem.2014.16860
- Chen X., Si C., Fatehi P. Cationic xylan-(2-methacryloyloxyethyl trimethyl ammonium chloride) polymer as a flocculant for pulping wastewater. Carbohydr. Polym. 2018; 186: 358–66. https://doi.org/10.1016/j.carbpol.2018.01.068
- Lu L., Pan Z., Hao N., Peng W. A novel acrylamide-free flocculant and its application for sludge dewatering. Water Res. 2014; 57: 304–12. https://doi.org/10.1016/j.watres.2014.03.047
- Zholdakova Z.I., Sinitsyna O.O., Tul’skaya E.A. Evaluation of the sanitary-and-epidemiological safety of flocculating agents used for portable water purification. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2006; 85(5): 42–4. https://elibrary.ru/kuzlbr (in Russian)
- Alekseeva A.V., Savostikova O.N., Mamonov R.A. Methodical issues of assessment of possibility of application in drinking water supply of polymeric materials. Mezhdunarodnyy zhurnal prikladnykh i fundamental’nykh issledovaniy. 2019; (10–2): 263–7. https://elibrary.ru/uyvsgo (in Russian)
- Liu Y., Zheng H., Sun Y., Ren J., Zheng X., Sun Q., et al. Synthesis of novel chitosan-based flocculants with amphiphilic structure and its application in sludge dewatering: role of hydrophobic groups. J. Clean. Prod. 2020; 249: 119350. https://doi.org/10.1016/j.jclepro.2019.119350
- Jiang X., Li Y., Tang X., Jiang J., He Q., Xiong Z., et al. Biopolymer-based flocculants: a review of recent technologies. Environ. Sci. Pollut. Res. Int. 2021; 28(34): 46934–63. https://doi.org/10.1007/s11356-021-15299-y
- Bhalkaran S., Wilson L.D. Investigation of self-assembly processes for chitosan-based coagulant-flocculant systems: a mini-review. Int. J. Mol. Sci. 2016; 17(10): 1662. https://doi.org/10.3390/ijms17101662
- Tang X., Jiang X., Zhang S., Zheng H., Tan X. Recent progress on graft polymerization of natural polymer flocculants: synthesis method, mechanism and characteristic. Mini Rev. Org. Chem. 2018; 15(3): 227–35. https://doi.org/10.2174/1570193X15666171213155054
- Zheng C., Zheng H., Wang Y., Wang Y., Qu W., An Q., et al. Synthesis of novel modified magnetic chitosan particles and their adsorption performance toward Cr(VI). Bioresour. Technol. 2018; 267: 1–8. https://doi.org/10.1016/j.biortech.2018.06.113
- Sanchez-Salvador J.L., Balea A., Monte M.C., Negro C., Blanco A. Chitosan grafted/cross-linked with biodegradable polymers: a review. Int. J. Biol. Macromol. 2021; 178: 325–43. https://doi.org/10.1016/j.ijbiomac.2021.02.200
- Duan C., Meng X., Meng J., Khan M.I.H., Dai L., Khan A., et al. Chitosan as a preservative for fruits and vegetables: a review on chemistry and antimicrobial properties. J. Biores. Bioproducts. 2019; 4(1): 11–21. https://doi.org/10.21967/jbb.v4i1.189
- Sanchez-Salvador J.L., Balea A., Monte M.C., Negro C., Blanco A. Chitosan grafted/cross-linked with biodegradable polymers: a review. Int. J. Biol. Macromolec. 2021; 178: 325–43. https://doi.org/10.1016/j.ijbiomac.2021.02.200
- Lapointe M., Barbeau B. Substituting polyacrylamide with an activated starch polymer during ballasted flocculation. J. Water Process Eng. 2019; 28: 129–34. https://doi.org/10.1016/j.jwpe.2019.01.011
- Wei H., Ren J., Li A., Yang H. Sludge dewaterability of a starch-based flocculant and its combined usage with ferric chloride. Chem. Engineer. J. 2018; 349: 737–47. https://doi.org/10.1016/j.cej.2018.05.151
- El Halal S.L.M., Kringel D.H., Zavareze E.R., Dias A.R.G. Methods for extracting cereal starches from different sources: a review. Stärke. 2019; 71(11–12): 1900128. https://doi.org/10.1002/star.201900128
- Roy D., Semsarilar M., Guthrie J.T., Perrier S. Cellulose modification by polymer grafting: a review. Chem. Soc. Rev. 2009; 38(7): 2046–64. https://doi.org/10.1039/b808639g
- Morantes D., Munoz E., Kam D., Shoseyov O. Highly charged cellulose nanocrystals applied as a water treatment flocculant. Nanomaterials (Basel). 2019; 9(2): 272. https://doi.org/10.3390/nano9020272.
- Negro C., Martín A.B., Sanchez-Salvador J.L., Campano C., Fuente E., Monte M.C., et al. Nanocellulose and its potential use for sustainable industrial applications. Lat. Am. Appl. Res. Int. J. 2020; 50(2): 59–64. https://doi.org/10.52292/j.laar.2020.471
- Campano C., Lopez-Exposito P., Blanco A., Negro C., van de Ven T.G.M. Hairy cationic nanocrystalline cellulose as a novel flocculant of clay. J. Colloid Interface Sci. 2019; 545: 153–61. https://doi.org/10.1016/j.jcis.2019.02.097
- Brenelli L.B., Mandelli F., Mercadante A.Z., Rocha G.J.M., Rocco S.A., Craievich A.F., et al. Acidification treatment of lignin from sugarcane bagasse results in fractions of reduced polydispersity and high free-radical scavenging capacity. Ind. Crop. Prod. 2016; 83: 94–103. https://doi.org/10.1016/j.indcrop.2015.12.013
- Guo K., Gao B., Yue Q., Xu X., Li R., Shen X. Characterization and performance of a novel lignin-based flocculant for the treatment of dye wastewater. Int. Biodeterior. Biodegrad. 2018; 133: 99–107. https://doi.org/10.1016/j.ibiod.2018.06.015
- Jiang Z., Hu C. Selective extraction and conversion of lignin in actual biomass to monophenols: a review. J. Energy Chem. 2016; 25(6): 947–56. https://doi.org/10.1016/j.jechem.2016.10.008
- Xia Z., Li J., Zhang J., Zhang X., Zheng X., Zhang J. Processing and valorization of cellulose, lignin and lignocellulose using ionic liquids. J. Biores. Bioprod. 2020; 5(2): 79–95. https://doi.org/10.1016/j.jobab.2020.04.001
- Jiang X., Li Y., Tang X., Jiang J., He Q., Xiong Z., et al. Biopolymer-based flocculants: a review of recent technologies. Environ. Sci. Pollut. Res. Int. 2021; 28(34): 46934–63. https://doi.org/10.1007/s11356-021-15299-y
- Register of accredited conformity assessment bodies. Available at: https://pub.fsa.gov.ru/ral
- Kremko L., Sarakach O., Dokutovich A. The acrylamide rate in drinking water testing with the gas-liquid chromatography. Nauka i innovatsii. 2014; (9): 67–9. https://elibrary.ru/tbbkpn (in Russian)
- Lopushanskaya E.M., Maksakova I.B., Krylov A.I. Determination of acrylamide in water by HPLC/MS method for drinking water quality control. Voda: khimiya i ekologiya. 2017; (10): 62–7. https://elibrary.ru/yuujbg (in Russian)
- Letterman R.D., Pero R.W. Contaminants in polyelectrolytes used in water treatment. J. Am. Water Works Ass. 1990; 82(11): 87–97.
- Charrois J.W.A., Hrudey S.E. Breakpoint chlorination and free-chlorine contact time: Implications for drinking water N-nitrosodimethylamine concentrations. Water Res. 2007; 41(3): 674–82. https://doi.org/10.1016/j.watres.2006.07.031
- Tan S., Jiang S., Lai Y., Yuan Q. Formation potential of nine nitrosamines from polyacrylamide during chloramination. Sci. Total. Environ. 2019; 670: 1103–10. https://doi.org/10.1016/j.scitotenv.2019.03.281
- Park S.H., Padhye L.P., Wang P., Cho M., Kim J.H., Huang C.H. N-nitrosodimethylamine (NDMA) formation potential of amine-based water treatment polymers: Effects of in situ chloramination, breakpoint chlorination, and pre-oxidation. J. Hazard. Mater. 2015; 282: 133–40. https://doi.org/10.1016/j.jhazmat.2014.07.044
- Tan S., Jiang S., Li X., Yuan Q. Factors affecting N-nitrosodimethylamine formation from poly(diallyldimethyl-ammonium chloride) degradation during chloramination. R. Soc. Open Sci. 2018; 5(8): 180025. https://doi.org/10.1098/rsos.180025
- Deng L., Huang C.H., Wang Y.L. Effects of combined UV and chlorine treatment on the formation of trichloronitromethane from amine precursors. Environ. Sci. Technol. 2014; 48(5): 2697–705. https://doi.org/10.1021/es404116n
- Zeng T., Li R.J., Mitch W.A. Structural modifications to quaternary ammonium polymer coagulants to inhibit n-nitrosamine formation. Environ. Sci. Technol. 2016; 50(9): 4778–87. https://doi.org/10.1021/acs.est.6b00602
- Tafeeva E.A., Snigirev S.V., Aksenov N.G. Reagents used in drinking water supply practice: safety problems. Voda: khimiya i ekologiya. 2019; (7–9): 102–7. https://elibrary.ru/pdhvfo (in Russian)
- Ma J., Wang R., Wang X., Zhang H., Zhu B., Lian L., et al. Drinking water treatment by stepwise flocculation using polysilicate aluminum magnesium and cationic polyacrylamide. J. Environ. Chem. Engineer. 2019; 7(3): 103049.
Қосымша файлдар
