Seasonal changes in secretory immunity indices in saliva in indigenous and alien inhabitants of the Yakutia Arctic zone
- Authors: Khripach L.V.1, Knyazeva T.D.1, Makovetskaya A.K.1, Zagaynova A.V.1
-
Affiliations:
- Centre for Strategic Planning and Management of Biomedical Health Risks of the FMBA
- Issue: Vol 102, No 10 (2023)
- Pages: 1048-1055
- Section: ENVIRONMENTAL HYGIENE
- Published: 24.11.2023
- URL: https://ruspoj.com/0016-9900/article/view/638315
- DOI: https://doi.org/10.47470/0016-9900-2023-102-10-1048-1055
- EDN: https://elibrary.ru/mjqpja
- ID: 638315
Cite item
Full Text
Abstract
Introduction. The combination of extreme climate with intensive migration processes creates favourable conditions for the spread of infectious diseases in the Arctic zone of the Russian Federation.
The purpose of the study: comparative analysis of immunity indicators in saliva samples of indigenous and alien residents of Yakutia Arctic zone, taking into account the influence of seasonal factors.
Materials and methods. Samples of mixed saliva of indigenous (n=212) and alien (n=120) male residents from Chokurdakh and Tiksi settlements were taken in 4 batches corresponding to the seasonal transition from summer to early winter. Levels of secretory IgA (sIgA) and cytokines IL-1ß, IL-8 and IL-6 in saliva were determined by ELISA. Main Effects ANOVA was used for the data analysis.
Results. No significant age-related changes of the indicators were found. During the transition from summer to winter, there was a decrease in sIgA, IL-1ß, and IL-8 levels in saliva of the examined persons (p from 0.001 to 1.6×10–7). Rate of seasonal changes did not differ between indigenous and alien inhabitants. IL-6 level in saliva of Chokurdakh residents (200 km from the sea) was higher (F(1,139)=9,202; p=0.003) and sIgA level was lower (F(1,324)=3,560; p=0.060) than corresponding levels in residents of coastal settlement Tiksi. Comparison of the body mass indices (medians 24.3 in Chokurdakh and 26.2 in Tiksi, p=0.0005) confirms that it may be the result of inequality in physical activity of residents due to almost 2-fold increase in wind speed and precipitation in Tiksi.
Limitations. Monitoring period till the beginning of winter, and not later, could predetermine the absence of the expected differences between indigenous (evolutionarily adapted) and alien residents.
Conclusion. Evaluation of immunity indicators in saliva samples is a simple and informative approach to study mechanisms of human adaptation to extreme climatic conditions.
Compliance with ethical standards: management of depersonalized population survey and the forms of informed consent for biosampling were agreed with the Local Ethics Committee), Protocol No. 31 of 23/06/2021.
Contributions:
Khripach L.V. — research concept and design, enzyme immunoassay (IL-1β), statistical analysis, writing text;
Zagainova A.V. — research concept and design, organization of biosample bank;
Knyazeva T.D. — enzyme immunoassay (IL-6, IL-8);
Makovetskaya A.K. — enzyme immunoassay (sIgA).
All authors are responsible for the integrity of all parts of the manuscript and approval of the manuscript final version
Conflict of interest. The authors declare no conflict of interest.
Acknowledgement. The study had no sponsorship.
Received: June 30, 2023 / Accepted: September 26, 2023 / Published: November 20, 2023
Keywords
About the authors
Ludmila V. Khripach
Centre for Strategic Planning and Management of Biomedical Health Risks of the FMBA
Author for correspondence.
Email: Lkhripach@cspmz.ru
ORCID iD: 0000-0003-0170-3085
MD, PhD, DSci., leading researcher of the Department of Preventive Toxicology and Biomedical Research, Centre for Strategic Planning of FMBA of Russia, Moscow, 119121, Russian Federation
e-mail: LKhripach@cspmz.ru
Russian FederationTatiana D. Knyazeva
Centre for Strategic Planning and Management of Biomedical Health Risks of the FMBA
Email: fake@neicon.ru
ORCID iD: 0000-0001-5279-5018
Кандидат биол. наук, старший научный сотрудник отдела профилактической токсикологии и медико-биологических исследований Федерального государственного бюджетного учреждения «Центр стратегического планирования и управления медико-биологическими рисками здоровью» Федерального медико-биологического агентства России (ФГБУ «ЦСП» ФМБА России), г. Москва, РФ
Russian FederationAnna K. Makovetskaya
Centre for Strategic Planning and Management of Biomedical Health Risks of the FMBA
Email: fake@neicon.ru
ORCID iD: 0000-0002-4652-1755
Кандидат мед. наук, старший научный сотрудник отдела профилактической токсикологии и медико-биологических исследований Федерального государственного бюджетного учреждения «Центр стратегического планирования и управления медико-биологическими рисками здоровью» Федерального медико-биологического агентства России (ФГБУ «ЦСП» ФМБА России), г. Москва, РФ
Russian FederationAnzhelika V. Zagaynova
Centre for Strategic Planning and Management of Biomedical Health Risks of the FMBA
Email: fake@neicon.ru
ORCID iD: 0000-0003-4772-9686
Кандидат мед. наук, руководитель лаборатории микробиологии и паразитологии Федерального государственного бюджетного учреждения «Центр стратегического планирования и управления медико-биологическими рисками здоровью» Федерального медико-биологического агентства России (ФГБУ «ЦСП» ФМБА России), г. Москва, РФ
Russian FederationReferences
- Kovshov A.A., Novikova Yu.A., Fedorov V.N., Tikhonova N.A. Socio-economic portrait and medical and demographic characteristics of the arctic territories of the republic of Sakha (Yakutia). Rossiyskaya Arktika. 2021; (2): 105–17. https://doi.org/10.24412/2658-4255-20212-105-117 https://elibrary.ru/xzrpdh (in Russian)
- Savvina N.V., Egorova V.B., Ivanova A.A., Argunova A.N., Borisova E.A., Ermolaev A.R., et al. The Future of the Republic Sakha (Yakutia). Book 3. Biomedical Problems of Indigenous Peoples Reproduction and Health Policy Objectives [Budushchee respubliki Sakha (Yakutiya). Kniga 3. Biomeditsinskie problemy vosproizvodstva korennykh narodov i zadachi politiki zdravookhraneniya]. Yakutsk; 2015. (in Russian)
- Pogorelov A.R. Some features of morbidity in the Arctic districts of the Republic of Sakha (Yakutia). Geopolitika i ekogeodinamika regionov. 2021; 7(3): 276–84. (in Russian)
- Samoylova I.Yu., Semenov S.I., Ignat’eva M.E., Shadrina S.S. Мorbidity of influenza and acute viral infection in Yakutia during epidemic seasons. Zhurnal infektologii. 2018; 10(1): 103–12. https://doi.org/10.22625/2072-6732-2018-10-1-103-112 https://elibrary.ru/yttpdl (in Russian)
- Analitis A., Katsouyanni K., Biggeri A., Baccini M., Forsberg B., Bisanti L., et al. Effects of cold weather on mortality: results from 15 European cities within the PHEWE project. Am. J. Epidemiol. 2008; 168(12): 1397–408. https://doi.org/10.1093/aje/kwn266
- du Prel J.B., Puppe W., Gröndahl B., Knuf M., Weigl J.A., Schaaff F., et al. Are meteorological parameters associated with acute respiratory tract infections? Clin. Infect. Dis. 2009; 49(6): 861–8. https://doi.org/10.1086/605435
- Mäkinen T.M., Juvonen R., Jokelainen J., Harju T.H., Peitso A., Bloigu A., et al. Cold temperature and low humidity are associated with increased occurrence of respiratory tract infections. Respir. Med. 2009; 103(3): 456–62. https://doi.org/10.1016/j.rmed.2008.09.011
- Romanyukha A.A., Sannikova T.E., Drynov I.D. Beginnings of epidemics of acute respiratory diseases. Vestnik Rossiyskoy akademii nauk. 2011; 81(2): 122–6. https://elibrary.ru/nrdmtz (in Russian)
- Wyse C.A., Clarke A.C., Nordon E.A., Murtagh C., Keogh A.A., Lopez L.M. Susceptibility to the common cold virus is associated with day length. iScience. 2022; 25(8): 104789. https://doi.org/10.1016/j.isci.2022.104789
- Wyse C., O’Malley G., Coogan A.N., McConkey S., Smith D.J. Seasonal and daytime variation in multiple immune parameters in humans: Evidence from 329,261 participants of the UK Biobank cohort. iScience. 2021; 24(4): 102255. https://doi.org/10.1016/j.isci.2021.102255
- Dopico X., Evangelou M., Ferreira R., Guo H., Pekalski M.L., Smyth D.J., et al. Widespread seasonal gene expression reveals annual differences in human immunity and physiology. Nat. Commun. 2015; 6: 7000. https://doi.org/10.1038/ncomms8000
- Pierre K., Schlesinger N., Androulakis I.P. The role of the hypothalamic-pituitary-adrenal axis in modulating seasonal changes in immunity. Physiol. Genomics. 2016; 48(10): 719–38. https://doi.org/10.1152/physiolgenomics.00006.2016
- Kaznacheev V.P., Kulikov V.Yu., Panin L.E., Sokolov V.P., Lyakhovich V.V., Shorin Yu.P., et al. Mechanisms of Human Adaptation in Conditions of High Latitudes [Mekhanizmy adaptatsii cheloveka v usloviyakh vysokikh shirot]. Leningrad: Meditsina; 1980. https://elibrary.ru/rzybyn (in Russian)
- Boyko E.R. Physiological and Biochemical Foundations of Human Life in the North [Fiziologo-biokhimicheskie osnovy zhiznedeyatel’nosti cheloveka na Severe]. Ekaterinburg; 2005. https://elibrary.ru/tqogjp (in Russian)
- Khasnulin V.I., Khasnulin P.V. Modern concepts of the mechanisms forming northern stress in humans in high latitudes. Ekologiya cheloveka. 2012; (1): 3–11. https://elibrary.ru/osklqp (in Russian)
- Malyarchuk B.A., Derenko M.V., Denisova G.A., Litvinov A.N. Distribution of the arctic variant of the CPT1A gene in indigenous populations of Siberia. Vavilovskiy zhurnal genetiki i selektsii. 2016; 20(5): 571–5. https://doi.org/10.18699/VJ16.130 https://elibrary.ru/wycwdb (in Russian)
- Stepanov V.A., Khar’kov V.N., Vagaytseva K.V., Bocharova A.V., Kazantsev A.Yu., Popovich A.A., et al. Search for genetic markers of climatic adaptation in populations of north Eurasia. Genetika. 2017; 53(11): 1254–66. https://doi.org/10.1134/S1022795417110114 https://elibrary.ru/uxzalk (in Russian)
- Hallmark B., Karafet T.M., Hsieh P., Osipova L.P., Watkins J.C., Hammer M.F. Genomic evidence of local adaptation to climate and diet in indigenous Siberians. Mol. Biol. Evol. 2019; 36(2): 315–27. https://doi.org/10.1093/molbev/msy211
- Cardona A., Pagani L., Antao T., Lawson D.J., Eichstaedt C.A., Yngvadottir B., et al. Genome-wide analysis of cold adaptation in indigenous Siberian populations. PLoS One. 2014; 9(5): e98076. https://doi.org/10.1371/journal.pone.0098076
- Pfaffe T., Cooper-White J., Beyerlein P., Kostner K., Punyadeera T. Diagnostic potential of saliva: current state and future applications. Clin. Chem. 2011; 57(5): 675–87. https://doi.org/10.1373/clinchem.2010.153767
- Riis J.L., Out D., Dorn L.D., Beal S.J., Denson L.A., Pabst S., et al. Salivary cytokines in healthy adolescent girls: Intercorrelations, stability, and associations with serum cytokines, age, and pubertal stage. Dev. Psychobiol. 2014; 56(4): 797–811. https://doi.org/10.1002/dev.21149
- Yu Y., Yu Z., Sun P., Lin B., Li L., Wang Z., et al. Effects of ambient air pollution from municipal solid waste landfill on children’s non-specific immunity and respiratory health. Environ. Pollut. 2018; 236: 382–90. https://doi.org/10.1016/j.envpol.2017.12.094
- Roi A., Rusu L.C., Roi C.I., Luca R.E., Boia S., Munteanu R.I. A new approach for the diagnosis of systemic and oral diseases based on salivary biomolecules. Dis. Markers. 2019; 2019: 8761860. https://doi.org/10.1155/2019/8761860
- Diesch T., Filippi C., Fritschi N., Filippi A., Ritz N. Cytokines in saliva as biomarkers of oral and systemic oncological or infectious diseases: A systematic review. Cytokine. 2021; 143: 155506. https://doi.org/10.1016/j.cyto.2021.155506
- Tada A., Senpuku H. The impact of oral health on respiratory viral infection. Dent. J. (Basel). 2021; 9(4): 43. https://doi.org/10.3390/dj9040043
- Khripach L.V., Knyazeva T.D., Koganova Z.I., Zheleznyak E.V., Zagaynova A.V. Indicators of oxidative stress in blood samples of indigenous residentsand newcomers in the arctic zone of Yakutia. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2023; 102(7): 624–31. https://doi.org/10.47470/0016-9900-2023-102-7-624-631 https://elibrary.ru/ugxspy (in Russian)
- Nieman D.C., Dumke C.I., Henson D.A., McAnulty S.R., McAnulty L.S., Lind R.H., et al. Immune and oxidative changes during and following the Western States Endurance Run. Int. J. Sports Med. 2003; 24(7): 541–7. https://doi.org/10.1055/s-2003-42018
- Nieman D.C. Immune function responses to ultramarathon race competition. Med. Sport. 2009; 13(4): 189–96. https://doi.org/10.2478/v10036-009-0031-4
- Luna L.A. Jr., Bachi A.L., Novaes e Brito R.R., Eid R.G., Suguri V.M., Oliveira P.W., et al. Immune responses induced by Pelargonium sidoides extract in serum and nasal mucosa of athletes after exhaustive exercise: modulation of secretory IgA, IL-6 and IL-15. Phytomedicine. 2011; 18(4): 303–8. https://doi.org/10.1016/j.phymed.2010.08.003
- Minetto M., Rainoldi A., Gazzoni M., Terzolo M., Borrione P., Termine A., et al. Differential responses of serum and salivary interleukin-6 to acute strenuous exercise. Eur. J. Appl. Physiol. 2005; 93(5-6): 679–86. https://doi.org/10.1007/s00421-004-1241-z
- Cox A.J., Pyne D.B., Gleson M., Callister R. Resting plasma and salivary IL-6 concentrations are not correlated in distance runners. Eur. J. Appl. Physiol. 2008; 103(4): 477–9. https://doi.org/10.1007/s00421-008-0722-x
- Shartanova N.V. Features of mucosal immunity in high-performance athletes. Effektivnaya farmakoterapiya. Allergologiya i immunologiya. 2015; (2–3): 34–8. (in Russian)
- Cullen T., Thomas A.W., Webb R., Hughes M.G. The relationship between interleukin-6 in saliva, venous and capillary plasma, at rest and in response to exercise. Cytokine. 2015; 71(2): 397–400. https://doi.org/10.1016/j.cyto.2014.10.011
- Nielsen A.R., Pedersen B.K. The biological roles of exercise-induced cytokines IL-6, IL-8 and IL-15. Appl. Physiol. Nutr. Metab. 2007; 32(5): 833–9. https://doi.org/10.1139/h07-054
Supplementary files
