Indices of oxidative stress under intranasal administration of deicing reagent solutions in rats

Cover Page

Cite item

Full Text

Abstract

Introduction. The use of road deicing reagents (RDR) is an effective measure to reduce winter traumatism and requires enhancement of methods for evaluation of deicers safety.

The aim of investigation: to study markers of oxidative stress in rat blood samples during intranasal (i/n) administration of RDR solutions, as a model of intake under natural conditions, using liquid commercial RDR (22% CaCl2; 6% NaCl).

Material and methods. Male Wistar rats (10 rats per group) were daily injected into the nasal cavity with 100 μl of RDR solutions in concentrations (C) 0; 0.75; 7.5 and 75 ml per liter of tap water. 5 and 28 days after the start of the experiment, the content of malondialdehyde (MDA), GSH, the activity of SOD, catalase, glutathione peroxidase (GPO) and glutathione reductase (GR) in the hemolysates were determined. Logarithmic transformation х=lg(С+0.01)+2 was used for regression analysis of dose - effect relations.

Results. 5 days after the start of the experiment, adaptive dose-dependent changes in activities of SOD (R = -0.504; p=0.001); GR (R = 0.548; p<0,001) and catalase (R=0.725; p<0,001) were revealed, and after 28 days these effects were replaced by dose-dependent increase in MDA content (R=0.617; p<0,001) and GPO activity (R=0.326; p=0.04). The revealed effects, apparently, are due to the presence of additional RDR components (such as detergents, corrosion inhibitors, etc.), since significant differences with corresponding control groups were found also during administration of 0.75 ml RDR per liter (CNa+ 200 times lower than in saline solution; CCa2+ equivalent to its serum content). In particular, sharp increase in catalase activity after 5 days may be indirect evidence of anticorrosive formates metabolism (commonly used anti-corrosive additive) in the conditions of their entry bypassing the portal vein.

Conclusion. I/n administration of the studied RDR solutions (0.75-75 ml/L) gave distinct dose-dependent signs of compensated (5 days) and decompensated (28 days) oxidative stress, presumably due to the presence of additional components besides of basic chlorides.

About the authors

Lyudmila V. Khripach

Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency

Author for correspondence.
Email: lkhripach@cspmz.ru
ORCID iD: 0000-0003-0170-3085

MD, Ph.D., DSci., Head of the laboratory of biochemical and molecular genetics methods, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, 119992, Moscow, Russian Federation.

e-mail: LKhripach@cspmz.ru

Russian Federation

Mariia A. Vodyanova

Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency

Email: noemail@neicon.ru
ORCID iD: 0000-0003-3350-5753
Russian Federation

Tatiana D. Knyazeva

Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency

Email: noemail@neicon.ru
ORCID iD: 0000-0001-5279-5018
Russian Federation

Zoya I. Koganova

Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency

Email: noemail@neicon.ru
ORCID iD: 0000-0002-4622-8110
Russian Federation

Anna K. Makovetskaya

Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency

Email: noemail@neicon.ru
ORCID iD: 0000-0002-4652-1755
Russian Federation

Olga N. Savostikova

Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency

Email: noemail@neicon.ru
ORCID iD: 0000-0002-7032-1366
Russian Federation

Anna V. Alekseeva

Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency

Email: noemail@neicon.ru
ORCID iD: 0000-0002-0422-8382
Russian Federation

Olga V. Ushakova

Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency

Email: noemail@neicon.ru
ORCID iD: 0000-0003-2275-9010
Russian Federation

Roman A. Mamonov

Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency

Email: noemail@neicon.ru
ORCID iD: 0000-0002-6540-6015
Russian Federation

Anna V. Malyugina

Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency

Email: noemail@neicon.ru
ORCID iD: 0000-0003-3930-0265
Russian Federation

References

  1. Sosenkina I.M., Osokin N.A., Klimentova A.Yu. Economic impact of ice and snow related injuries in Russian regions. Strategicheskie resheniya i risk-menedzhment. 2019; 10(1): 58–69. https://doi.org/10.17747/2618-947X-019-1-58-69 (in Russian)
  2. Shats M.M., Skachkov Yu.B., Cherepanova A.P. Street injuries in Yakutsk as a derivative of the state of road systems. Yakutskiy meditsinskiy zhurnal. 2017; 59(3): 113–6. (in Russian)
  3. Devyatkova G.I., Mchedlishvili A.A., Shchepetkova E.R. The analysis of indicators of the traumatism bound to the controlled reason (ice) on an example of the large regional centre (Perm). Mezhdunarodnyy zhurnal prikladnykh i fundamental’nykh issledovaniy. 2018; (11): 267–71. (in Russian)
  4. Björnstig U., Björnstig J., Dahlgren A. Slipping on ice and snow – elderly women and young men are typical victims. Accid. Anal. Prev. 1997; 29(2): 211–5. https://doi.org/10.1016/s0001-4575(96)00074-7
  5. Morency P., Voyer C., Burrows S., Goudreau S. Outdoor falls in an urban context: winter weather impacts and geographical variations. Can. J. Public Health. 2012; 103(3): 218–22. https://doi.org/10.1007/bf03403816
  6. Murray I.R., Howie C.R., Biant L.C. Severe weather warnings predict fracture epidemics. Injury. 2011; 42(7): 687–90. https://doi.org/10.1016/j.injury.2010.12.012
  7. Merrild U., Bak S. An excess of pedestrian injuries in icy conditions: A high-risk fracture group – elderly women. Accid. Anal. Prev. 1983; 15(1): 41–8.
  8. Safonova Yu.A., Zotkin E.G., Toroptsova N.V. Diagnosis for risk for falls and their prevention: draft clinical guidelines by the association of rheumatologists of Russia and the Russian osteoporosis association. Nauchno-prakticheskaya revmatologiya. 2020; 58(2): 133–9. https://doi.org/10.14412/1995-4484-2020-133-139 (in Russian)
  9. Nikitin A.A. Deicing materials. in search of a compromise. Bashkirskiy ekologicheskiy vestnik. 2013; (3–4): 33–5. (in Russian)
  10. Arzhanukhina S.P., Garibov R.B., Kochetkov A.V., Yankovskiy L.V., Glukhov T.A., Bobkov A.V. The choice of requirements for deicing materials using in winter maintenance of metropolis highways. Voda: khimiya i ekologiya. 2013; 58(4): 106–15. (in Russian)
  11. Andreychatenko V.V., Vandyshev S.A., Zotikov V.S., Primakov A.A., Rebristaya A.P., Rodin A.A. The composition of the anti-icing reagent. Patent RF № 2259383 C1; 2005. (in Russian)
  12. Achkeeva M.V., Morozov I.V., Romanyuk N.V., Sharshkov V.V. The method for preventing or eliminating slippery of the road surface, the method for preparing liquid anti-icing reagent and production line for its preparation. Patent RF № 2352709 C2; 2009. (in Russian)
  13. Buteau G.H., Cushman J.R., Griffis L.C., Rogers B.C., Duke J.T., Cooper P.N. The effects of exposure to Chevron Ice-B-Gon® deicer in laboratory animals and human volunteers. Resour. Conserv. Recycl. 1992; 7(1–3): 133–8. https://doi.org/10.1016/0921-3449(92)90011-P
  14. Rusakov N.V., Mukhambetova L.Kh., Kryatov I.A., Koganova Z.I., Fadeeva I.I., Chudakova S.B., et al. Evaluation of the hazard of soil-polluting chemicals upon exposure of experimental animals. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2007; 85(2): 68–70. (in Russian)
  15. Chudakova S.В. Toxicological and hygienic assessment of the hazard of anti-icing reagents: Diss. Moscow; 2006. (in Russian)
  16. Kryatov I.A., Tonkopiy N.I., Vodyanova M.A., Rusakov N.V., Doneryan L.G., Evseeva I.S., et al. Methodical approaches to the substantiation of hygienic requirements for the application of deicing materials. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2014; 93(6): 52–4. (in Russian)
  17. Alikbaeva L.A., Mokrousova O.N., Merkur’eva M.A., Bek A.V., Sadchenko V.Yu. Toxicological-hygienic characteristics of chlorinecontaining deicing materials. Profilakticheskaya meditsina. 2014; (4): 25–9. (in Russian)
  18. Alikbaeva L.A., Zolotareva A.A., Bek A.V., Ryzhkov A.L. Toxicological-hygienic assessment of solid chemical de-icing materials. Profilakticheskaya i klinicheskaya meditsina. 2019; (1): 22–7. (in Russian)
  19. Vodyanova M.A., Kryatov I.A., Chudakova S.B., Ushakova O.V., Evseeva I.S., Makovetskaya A.K., et al. Evaluation of allergenic, immunogenic and skin-irritant effects of deicing chemicals in warm-blooded animals. Byulleten’ eksperimental’noy biologii i meditsiny. 2019; 167(5): 656–9.
  20. Stocks J., Dormandy T.L. A direct thiobarbituric acid-reacting chromogen in human red blood cells. Clin. Chim. Acta. 1969; 27(1): 117–20. https://doi.org/10.1016/0009-8981(70)90383-9
  21. Ellman G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959; 82(1): 70-77.
  22. Sun N., Zigmun S. An improved spectrophotometric assay for superoxide dismutase based on epinephrine autoxidation. Anal. Biochem. 1978; 90(1): 81–9. https://doi.org/10.1016/0003-2697(78)90010-6
  23. Korolyuk M.A., Ivanova L.I., Mayorova I.G., Tokarev V.E. Method for the determination of catalase activity. Laboratornoe delo. 1988; (4): 44–7. (in Russian)
  24. Arutyunyan A.V., Dubinina E.E., Zybina N.N. Methods for Assessing of Free Radical Oxidation and Antioxidant System of the Organism [Metody otsenki svobodnoradikal’nogo okisleniya i antioksidantnoy sistemy organizma]. St. Petersburg: Foliant; 2000. (in Russian)
  25. Sidorenko G.I., Merkur’eva R.V., eds. Guidelines for the evaluation of biochemical, morphological, immunological and physiological indicators of early changes in human functional reactions under exposition to environmental factors. Moscow-Perm’; 1986: 32–3. (in Russian)
  26. Boyaka P.N., McGhee J.R., Czerkinsky C., Mestecky J. Mucosal vaccines: an overview. In: Mestecky J., Lamm M.E., eds. Mucosal Immunology. Cambridge: Academic Press, 2005: 855–74.
  27. Sinyashina L.N., Semin E.G., Medkova A.Yu., Syundyukova R.A., Karataev G.I. Pre-clinical toxicity study and safety assessment of candidate live pertussis vaccine for intranasal administration. Epidemiologiya i vaktsinoprofilaktika. 2018; 17(6): 98–108. https://doi.org/10.31631/2073-3046-2018-17-6-98-108 (in Russian)
  28. Wang‑Fischer Y. Manual of Stroke Models in Rats. Boca Raton: CRC Press; 2008.
  29. Song G., Xi G., Li Y., Zhao Y., Qi C., Song L., et al. Double triggers, nasal induction of a Parkinson’s disease mouse model. Neurosci. Lett. 2020; 724: 134869. https://doi.org/10.1016/j.neulet.2020.134869
  30. Wang C.Y., Ihmsen H., Hu Z.Y., Chen J., Ye X.F., Chen F., et al. Pharmacokinetics of intranasally administered dexmedetomidine in Chinese children. Front. Pharmacol. 2019; 10: 756. https://doi.org/10.3389/fphar.2019.00756
  31. Hanson L.R., Roeytenberg A., Martinez P.M., Coppes V.G., Sweet D.C., Rao R.J., et al. Intranasal deferoxamine provides increased brain exposure and significant protection in rat ischemic stroke. J. Pharmacol. Exp. Ther. 2009; 330(3): 679–86. https://doi.org/10.1124/jpet.108.149807
  32. Thorne R.G., Pronk G.J., Padmanabhan V., Frey W.H. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience. 2004; 127(2): 481–96. https://doi.org/10.1016/j.neuroscience.2004.05.029
  33. Pires A., Fortuna A., Alves G., Falcao A. Intranasal drug delivery: how, why and what for? J. Pharm. Pharm. Sci. 2009; 12(3): 288–311. https://doi.org/10.18433/j3nc79
  34. Hazardous Substances Data Bank (HSDB). Record Name: SODIUM CHLORIDE, CID 5234. Available at: https://pubchem.ncbi.nlm.nih.gov/source/hsdb/6368
  35. Kagen M.H., Bansal M.G., Grossman M. Calcinosis cutis following the administration of intravenous calcium therapy. Cutis. 2000; 65(4): 193–4.
  36. Moss J., Syrengelas A., Antaya R., Lazova R. Calcinosis cutis: a complication of intravenous administration of calcium glucanate. J. Cutan. Pathol. 2006; 33(Suppl. 2): 60–2. https://doi.org/10.1111/j.1600-0560.2006.00519.x
  37. Lin C., Hsieh K.C., Yeh M.C., Sheen-Chen S.M., Chou F.F. Skin necrosis after intravenous calcium chloride administration as a complication of parathyroidectomy for secondary hyperparathyroidism: report of four cases. Surg. Today. 2007; 37(9): 778–81. https://doi.org/10.1007/s00595-006-3426-z
  38. Jiang M., Terra J., Rossi A.M., Morales M.A., Saitovitch E.B., Ellis D.E. Fe 2+/Fe 3+ substitution in hydroxyapatite: Theory and experiment. Phys. Rev. B. 2002; 66(22): 224107.
  39. Kolmas J., Groszyk E., Kwiatkowska-Różycka D. Substituted hydroxyapatites with antibacterial properties. BioMed Res. Int. 2014; 2014: 178123. https://doi.org/10.1155/2014/178123
  40. Han S.X., Ning Z.W., Chen K., Zheng J. Preparation and tribological properties of Fe-hydroxyapatite bioceramics. Biosurf. Biotribol. 2017; 3(2): 75–81. https://doi.org/10.1016/j.bsbt.2017.07.001
  41. Patel G.B., Zhou H., Ponce A., Chen W. Safety evaluation of calcium administered intranasally to mice. Int. J. Toxicol. 2009; 28(6): 510–8. https://doi.org/10.1177/1091581809347388
  42. Southam D., Dolovich M., O’Byrne P.M., Inman M. Distribution of intranasal instillations in mice: effects of volume, time, body position, and anesthesia. Am. J. Physiol. Lung Cell Mol. Physiol. 2002; 282(4): L833–9. https://doi.org/10.1152/ajplung.00173.2001
  43. Rozov S.Yu., Patkina I.A., Rozov Yu.N., Shestachenko A.Yu. Application of formic acid salts to improve the properties of de-icing materials. Eur. J. Analyt. Appl. Chem. 2017; (1): 21–30. https://doi.org/10.20534/EJAAC-17-1-21-30 (in Russian)
  44. Cook R.J., Champion K.M., Giometti C.S. Methanol toxicity and formate oxidation in NEUT2 mice. Arch. Biochem. Biophys. 2001; 393(2): 192–8. https://doi.org/10.1006/abbi.2001.2485
  45. Hanzlik R.P., Fowler S.C., Eells J.T. Absorption and elimination of formate following oral administration of calcium formate in female human subjects. Drug Metab. Dispos. 2005; 33(2): 282–6. https://doi.org/10.1124/dmd.104.001289
  46. Brosnan M.E., Brosnan J.T. Formate: the neglected member of one-carbon metabolism. Annu. Rev. Nutr. 2016; 36: 369–88. https://doi.org/10.1146/annurev-nutr-071715-050738

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Khripach L.V., Vodyanova M.A., Knyazeva T.D., Koganova Z.I., Makovetskaya A.K., Savostikova O.N., Alekseeva A.V., Ushakova O.V., Mamonov R.A., Malyugina A.V.



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 37884 от 02.10.2009.