Assessment of the neurotoxic effect of iron (III) oxide nanoparticles at the subcellular level

Cover Page

Cite item

Full Text

Abstract

Introduction. Both naturally occurring and artificially produced nanoparticles are ubiquitous; their high concentrations can be detected in the environment, thus posing risks of toxic effects in humans. Penetrating the blood-brain barrier by metal nanoparticles has been already proven and is currently of interest from the point of view of toxicology and hygiene.

Materials and methods. Female rats were exposed to ferric oxide nanoparticles administered intranasally with a 25 mg/ml suspension at a dose of 50 µl three times a week during six weeks. The experimental and control groups contained seven animals each. Tissue samples for testing were taken from the olfactory bulbs of the rat’s brain. Iron (III) oxide nanoparticles were identified by electron microscopy and energy-dispersive X-ray spectroscopy. The cytotoxic effect of ferric oxide nanoparticles was assessed by ranking mitochondria by mitochondrial membrane morphotypes and comparing their distribution in the experimental and control groups.

Results. We confirmed the presence of nanoparticles in tissues of the olfactory bulbs of the exposed rodents. The morphotype pattern of mitochondria showed significant changes following the exposure to ferric oxide nanoparticles: the proportion of mitochondria with normal and vesicular swollen morphotypes decreased by 36.4 and 4.9%, respectively, compared with the control group of animals, the proportion of mitochondria with normal vesicular and vesicular morphotypes increased by 19.8 and 21.8%, while the proportion of vesicular swollen mitochondria decreased from 9.5% to 4.6%.

Limitations. The study was limited to examining ultrastructural changes in mitochondria and identifying ferric oxide nanoparticles in tissues.

Conclusions. Further studies of the impact of iron-containing nanoparticles on the structure and functions of the mitochondrial apparatus can help to identify their potential harm at the subcellular level and provide information for the development of appropriate health protective measures and new strategies for prevention and treatment of metal toxicity-induced diseases in humans.

Compliance with ethical standards. The animals were kept in accordance with the International Guiding Principles for Biomedical Research Involving Animals (CIOMS and ICLAS). The study approval was provided by the Local Ethics Committee of the Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers (Minutes No. 2 of April 20, 2020).

Contribution:
Sutunkova M.P., Minigalieva I.A. — study conception and design;
Shelomentsev I.G., Amromin L.A., Shaikhova D.R. — data collection, analysis and interpretation of results, literature review, draft manuscript preparation.
All authors are responsible for the integrity of all parts of the manuscript and approval of the manuscript final version

Conflict of interest. The authors declare no conflict of interest.

Acknowledgement. The study had no sponsorship.

Received: February 21, 2023 / Accepted: June 7, 2023 / Published: August 30, 2023

About the authors

Ivan G. Shelomentsev

Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers of the Federal Service for Surveillance in the Sphere of Consumer Rights and Human Welfare

Author for correspondence.
Email: shelomencev@ymrc.ru
ORCID iD: 0000-0002-8795-8777

Researcher, Department of Molecular Biology and Electron Microscopy, Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, 620014, Russian Federation.

e-mail: shelomencev@ymrc.ru

Russian Federation

Lev A. Amromin

Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers of the Federal Service for Surveillance in the Sphere of Consumer Rights and Human Welfare

Email: noemail@neicon.ru
ORCID iD: 0000-0001-7703-5103
Russian Federation

Daria R. Shaikhova

Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers of the Federal Service for Surveillance in the Sphere of Consumer Rights and Human Welfare

Email: noemail@neicon.ru
ORCID iD: 0000-0002-7029-3406
Russian Federation

Marina P. Sutunkova

Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers of the Federal Service for Surveillance in the Sphere of Consumer Rights and Human Welfare

Email: noemail@neicon.ru
ORCID iD: 0000-0002-1743-7642
Russian Federation

Ilzira A. Minigalieva

Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers of the Federal Service for Surveillance in the Sphere of Consumer Rights and Human Welfare

Email: noemail@neicon.ru
ORCID iD: 0000-0002-1871-8593
Russian Federation

References

  1. Pereira A.C., Gonçalves B.B., Brito R.D.S., Vieira L.G., Lima E.C.O., Rocha T.L. Comparative developmental toxicity of iron oxide nanoparticles and ferric chloride to zebrafish (Danio rerio) after static and semi-static exposure. Chemosphere. 2020; 254: 126792. https://doi.org/10.1016/j.chemosphere.2020.126792
  2. Maher B.A., González-Maciel A., Reynoso-Robles R., Torres-Jardón R., Calderón-Garcidueñas L. Iron-rich air pollution nanoparticles: An unrecognised environmental risk factor for myocardial mitochondrial dysfunction and cardiac oxidative stress. Environ. Res. 2020; 188: 109816. https://doi.org/10.1016/j.envres.2020.109816
  3. Chrishtop V.V., Mironov V.A., Prilepskii A.Y., Nikonorova V.G., Vinogradov V.V. Organ-specific toxicity of magnetic iron oxide-based nanoparticles. Nanotoxicology. 2021; 15(2): 167–204. https://doi.org/10.1080/17435390.2020.1842934
  4. Khan F.A., Almohazey D., Alomari M., Almofty S.A. Impact of nanoparticles on neuron biology: current research trends. Int. J. Nanomedicine. 2018; 13: 2767–76. https://doi.org/10.2147/IJN.S165675
  5. Karmakar A., Zhang Q., Zhang Y. Neurotoxicity of nanoscale materials. J. Food Drug Anal. 2014; 22(1): 147–60. https://doi.org/10.1016/j.jfda.2014.01.012
  6. Teleanu D.M., Chircov C., Grumezescu A.M., Teleanu R.I. Neurotoxicity of nanomaterials: An up-to-date overview. Nanomaterials (Basel). 2019; 9(1): 96. https://doi.org/10.3390/nano9010096
  7. Win-Shwe T.T., Fujimaki H. Nanoparticles and neurotoxicity. Int. J. Mol. Sci. 2011; 12(9): 6267–80. https://doi.org/10.3390/ijms12096267
  8. Borisova T. Nervous system injury in response to contact with environmental, engineered and planetary micro- and nano-sized particles. Front. Physiol. 2018; 9: 728. https://doi.org/10.3389/fphys.2018.00728
  9. Boyes W.K., van Thriel C. Neurotoxicology of nanomaterials. Chem. Res. Toxicol. 2020; 33(5): 1121–44. https://doi.org/10.1021/acs.chemrestox.0c00050
  10. Dhakshinamoorthy V., Manickam V., Perumal E. Neurobehavioural toxicity of iron oxide nanoparticles in mice. Neurotox. Res. 2017; 32(2): 187–203. https://doi.org/10.1007/s12640-017-9721-1
  11. Wu J., Ding T., Sun J. Neurotoxic potential of iron oxide nanoparticles in the rat brain striatum and hippocampus. Neurotoxicology. 2013; 34: 243–53. https://doi.org/10.1016/j.neuro.2012.09.006
  12. Brand M.D., Nicholls D.G. Assessing mitochondrial dysfunction in cells. Biochem J. 2011; 435(2): 297–312. https://doi.org/10.1042/BJ20110162
  13. Meyer J.N., Leung M.C., Rooney J.P., Sendoel A., Hengartner M.O., Kisby G.E., et al. Mitochondria as a target of environmental toxicants. Toxicol. Sci. 2013; 134(1): 1–17. https://doi.org/10.1093/toxsci/kft102
  14. Joza N., Susin S.A., Daugas E., Stanford W.L., Cho S.K., Li C.Y., et al. Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature. 2001; 410(6828): 549–54. https://doi.org/10.1038/35069004
  15. Mayer B., Oberbauer R. Mitochondrial regulation of apoptosis. Physiology. 2003; 18(3): 89–94. https://doi.org/10.1152/nips.01433.2002
  16. Sun M.G., Williams J., Munoz-Pinedo C., Perkins G.A., Brown J.M., Ellisman M.H., et al. Correlated three-dimensional light and electron microscopy reveals transformation of mitochondria during apoptosis. Nat. Cell Biol. 2007; 9(9): 1057–65. https://doi.org/10.1038/ncb1630
  17. Katel’nikova A.E., Kryshen’ K.L., Zueva A.A., Makarova M.N. Intranasal introduction to laboratory animals. Laboratornye zhivotnye dlya nauchnykh issledovaniy. 2019; (2): 9. https://doi.org/10.29296/2618723X-2019-02-09 https://elibrary.ru/xbrmnv (in Russian)
  18. Dumková J., Smutná T., Vrlíková L., Le Coustumer P., Večeřa Z., Dočekal B., et al. Sub-chronic inhalation of lead oxide nanoparticles revealed their broad distribution and tissue-specific subcellular localization in target organs. Part. Fibre. Toxicol. 2017; 14(1): 55. https://doi.org/10.1186/s12989-017-0236-y
  19. Minigalieva I.A., Katsnelson B.A., Panov V.G., Privalova L.I., Varaksin A.N., Gurvich V.B., et al. In vivo toxicity of copper oxide, lead oxide and zinc oxide nanoparticles acting in different combinations and its attenuation with a complex of innocuous bio-protectors. Toxicology. 2017; 380: 72–93. https://doi.org/10.1016/j.tox.2017.02.007
  20. Cramer S., Tacke S., Bornhorst J., Klingauf J., Schwerdtle T., Galla H.J. The influence of silver nanoparticles on the blood-brain and the blood-cerebrospinal fluid barrier in vitro. J. Nanomed. Nanotechnol. 2014; 5: 1000225. https://doi.org/10.4172/2157-7439.1000225
  21. Panzarini E., Mariano S., Carata E., Mura F., Rossi M., Dini L. Intracellular transport of silver and gold nanoparticles and biological responses: an update. Int. J. Mol. Sci. 2018; 19(5): 1305. https://doi.org/10.3390/ijms19051305
  22. Ruan L., Li H., Zhang J., Zhou M., Huang H., Dong J., et al. Chemical transformation and cytotoxicity of iron oxide nanoparticles (IONPs) accumulated in mitochondria. Talanta. 2023; 251: 123770. https://doi.org/10.1016/j.talanta.2022.123770
  23. Rivas-García L., Quiles J.L., Varela-López A., Giampieri F., Battino M., Bettmer J., et al. Ultra-small iron nanoparticles target mitochondria inducing autophagy, acting on mitochondrial DNA and reducing respiration. Pharmaceutics. 2021; 13(1): 90. https://doi.org/10.3390/pharmaceutics13010090
  24. Khan M.I., Mohammad A., Patil G., Naqvi S.A., Chauhan L.K., Ahmad I. Induction of ROS, mitochondrial damage and autophagy in lung epithelial cancer cells by iron oxide nanoparticles. Biomaterials. 2012; 33(5): 1477–88. https://doi.org/10.1016/j.biomaterials.2011.10.080
  25. Shiozaki E.N., Shi Y. Caspases, IAPs and Smac/DIABLO: mechanisms from structural biology. Trends Biochem. Sci. 2004; 29(9): 486–94. https://doi.org/10.1016/j.tibs.2004.07.003
  26. Perkins G.A., Sun M.G., Frey T.G. Chapter 2 correlated light and electron microscopy/electron tomography of mitochondria in situ. Methods Enzymol. 2009; 456: 29–52. https://doi.org/10.1016/s0076-6879(08)04402-9

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Shelomentsev I.G., Amromin L.A., Shaikhova D.R., Sutunkova M.P., Minigalieva I.A.



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 37884 от 02.10.2009.