VALPROIC ACID AS A REFERENCE SUBSTANCE FOR THE STUDY OF THE MOLECULAR-GENETIC MECHANISM OF OBESOGENITY OF ENDOCRINE DISRUPTERS

Cover Page

Cite item

Full Text

Abstract

Perfluorooctanoic acid (PFOA) and its derivatives are recognized as obesogens. Clinically used valproic acid (VPA) as a drug is structurally similar to PFOA. The objective of the investigation was to study the molecular-genetic mechanism of the weight gain by patients taking the VPA drugs and correlation with candidate genes involved in the metabolism of medium chain fatty acids. Weight and basal insulin level were evaluated in 238 patients both before and after 12 months of VPA treatment. Genotyping of SNPs rs1801282, C>G (Pro12Ala) gene PPARγ and rs1799883, G>A (Ala54Thr) gene FABP2 were performed with TaqMan Real-Time PCR Assay. Women who gained weight were genotyped «СС» for the rs1801282 PPARγ gene and appeared to have significantly higher insulin level (26.3±1.7 uU/ml) as compared to women with the same genotype and without weight gain (14.9±3.1 uU/ml). Similarly, men who gained weight and were genotyped «СС» for the rs1801282 PPARγ gene, showed significantly higher insulin level (25.4±1.8 uU/ml) as compared to men with the same genotype and without weight gain (13.,3±2.9 uU/ml). Women who gained weight and were genotyped «AA» or «AG» for the rs1799883 FABP2 gene had significantly higher insulin level (32.1±1.7 uU/ml) as compared to women with the same genotype and without weight gain (17.1±3.2 uU/ml). No correlation of insulin levels with weight gain and genotypes were identified for men. Obesogens, structurally similar to the medium chain fatty acids (in particular PFOA and analogues), can affect weight gain through the development of insulin resistance.

About the authors

M. G. Aksenova

A.N.Sysin Research Institute of Human Ecology and Environmental Health

Author for correspondence.
Email: sibr@yandex.ru
Russian Federation

O. O. Sinitsyna

A.N.Sysin Research Institute of Human Ecology and Environmental Health

Email: noemail@neicon.ru
Russian Federation

A. V. Kirillov

A.N.Sysin Research Institute of Human Ecology and Environmental Health

Email: noemail@neicon.ru
Russian Federation

O. B. Kozlova

A.N.Sysin Research Institute of Human Ecology and Environmental Health

Email: noemail@neicon.ru
Russian Federation

S. G. Burd

N.I. Pirogov Russian National Research Medical University

Email: noemail@neicon.ru
Russian Federation

References

  1. Grün F., Blumberg B. Environmental obesogens: organotins and endocrine disruption via nuclear receptor signaling. Endocrinology. 2006; 147(6 Suppl.): S50-5.
  2. Thayer K.A., Heindel J.J., Bucher J.R., Gallo M.A. Role of environmental chemicals in diabetes and obesity: a national toxicology program workshop review. Environ. Health Perspect. 2012; 120(6): 779-89.
  3. Product Knowledge Network. PFOA. Available at: http://www.productknowledge.com/PDF/PKN%20PDF_PFOA.pdf
  4. Barry V., Darrow L.A., Klein M., Winquist A., Steenland K. Early life perfluorooctanoic acid (PFOA) exposure and overweight and obesity risk in adulthood in a community with elevated exposure. Environ. Res. 2014; 132: 62-9.
  5. Kishi R., Nakajima T., Goudarzi H., Kobayashi S., Sasaki S., Okada E. et al. The Association of Prenatal Exposure to Perfluorinated Chemicals with Maternal Essential and Long-Chain Polyunsaturated Fatty Acids during Pregnancy and the Birth Weight of Their Offspring: The Hokkaido Study. Environ. Health Perspect. 2015; 123(10): 1038-45.
  6. OECD Environment, Health and Safety Publications. Detailed review paper on the state of the science on novel in vitro and in vivo screening and testing methods and endpoints for valuating endocrine disruptors. Series on Testing & Assessment. Table 8-4. ENV/JM/MONO(2012)23. 2012; (178): 121.
  7. Henley D.V., Mueller S., Korach K.S. The short-chain fatty acid methoxyacetic acid disrupts endogenous estrogen receptor-α-mediated signaling. Environ. Health Perspect. 2009; 117(11): 1702-6.
  8. OECD Guidelines for the Testing of Chemicals. Available at: http://www.oecd.org/chemicalsafety/testing/oecdguidelinesforthetestingofchemicals.htm
  9. OECD and EU test guidelines. Available at: http://echa.europa.eu/support/oecd-eu-test-guidelines
  10. Hara M., Alcoser S.Y., Qaadir A., Beiswenger K.K., Cox N.J., Ehrmann D.A. Insulin resistance is attenuated in women with polycystic ovary syndrome with the Pro(12)Ala polymorphism in the PPAR gamma gene. J. Clin. Endocrinol. Metab. 2002; 87(2): 772-5.
  11. Stumvoll M., Wahl H.G., Loblein K., Becker R., Machicao F., Jacob S. et al. Pro12Ala Polymorphism in the Peroxisome Proliferator-Activated Receptor-g2 Gene Is Associated With Increased Antilipolytic Insulin Sensitivity. Diabetes. 2001; 50(4): 876-81.
  12. Scaglioni S., Verduci E., Salvioni M., Biondi M.L., Radaelli G., Agostoni C. et al. PPAR-gamma2 Pro12Ala Variant, Insulin Resistance and Plasma Long-Chain Polyunsaturated Fatty Acids In Childhood Obesity. Pediatr. Res. 2006; 60(4): 485-9.
  13. Desvergne B., Wahli W. Peroxisome proliferator-activated receptors: Nuclear control of metabolism. Endocrine Rev. 1999; 20(5): 649-88.
  14. Willson T.M., Lambert M.H., Kliewer S.A. Peroxisome proliferator-activated receptor γ and metabolic disease. Annu. Rev. Biochem. 2001; 70: 341-67.
  15. Dreyer C., Krey G., Keller H., Givel F., Helftenbein G., Wahli W. Control of the peroxisomal beta-oxidation pathway by a novel family of nuclear hormone receptors. Cell. 1992; 68(5): 879-87.
  16. Semple R.K., Chatterjee V.K., O’Rahilly S. PPAR gamma and human metabolic disease. J. Clin. Invest. 2006; 116(3): 581-9.
  17. Ristow M., Muller-Wieland D., Pfeiffer A., Krone W., Kahn C.R. Obesity associated with a mutation in a genetic regulator of adipocyte differentiation. N. Engl. J. Med. 1998; 339(14): 953-9.
  18. Razquin C., Marti A., Martinez J.A. Evidences on three relevant obesogenes: MC4R, FTO and PPARγ. Approaches for personalized nutrition. Mol. Nutr. Food Res. 2011; 55(1): 136-49.
  19. Tonjes A., Scholz M., Loeffler M., Stumvoll M. Association of Pro12Ala polymorphism in peroxisome proliferator-activated receptor gamma with pre-diabetic phenotypes: Meta-analysis of 57 studies on nondiabetic individuals. Diabetes Care. 2006; 29(11): 2489-97.
  20. Pereira-Fernandes A., Vanparys C., Hectors T.L., Vergauwen L., Knapen D., Jorens P.G. et al. Unraveling the mode of action of an obesogen: mechanistic analysis of the model obesogen tributyltin in the 3T3-L1 cell line. Mol. Cell. Endocrinol. 2013; 370(1-2): 52-64.
  21. Weiss E.P., Brown M.D., Shuldiner A.R., Hagberg J.M. Fatty acid binding protein-2 gene variants and insulin resistance: gene and gene-environment interaction effects. Physiol Genomics. 2002; 10(3): 145-57.
  22. Agren J.J., Vidgren H.M., Valve R.S., Laakso M., Uusitupa M.I. Postprandial responses of individual fatty acids in subjects homozygous for the threonine- or alanine-encoding allele in codon 54 of the intestinal fatty acid binding protein 2 gene. Am. J. Clin. Nutr. 2001; 73(1): 31-5.
  23. Baier L.J., Sacchettini J.C., Knowler W.C., Eads J., Paolisso G., Tataranni P.A. et al. An Amino Acid Substitution in the Human Intestinal Fatty Acid Binding Protein Is Associated with Increased Fatty Acid Binding, Increased Fat Oxidation, and Insulin Resistance. J. Clin. Invest. 1995; 95(3): 1281-7.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Aksenova M.G., Sinitsyna O.O., Kirillov A.V., Kozlova O.B., Burd S.G.



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 37884 от 02.10.2009.