Viral contaminants of food products and methods of their detection

Cover Page

Cite item

Full Text

Abstract

There were summarized data on epidemiology and the properties of several groups of viral diseases, actually or potentially capable of implementation of the food route of transmission of infection (noroviruses, hepatitis viruses A and E, adenoviruses, astroviruses, rotaviruses, “avian” and “swine” flu viruses). There were mentioned most well-known massive outbreaks of enterovirus infections in countries of South-East Asia, India, China, Europe and other regions. The importance of products of animal and vegetable origin, and also water biological resources as factors of transmission of viral infections are shown. The analysis of available methods of detection of foodborne viruses shows the execution of analysis to demand for matching of methods for extraction and concentration of samples. An important criterion of the suitability of the used variant of the extraction must be its compatibility with demands for molecular methods — the minimum number of stages of sample processing with chemical reagents, neutral pH, preservation of antigenic properties and the intact viral RNA of pathogen. With consideration of the genetic diversity of food viruses, their detection requires the assortment of effective combinations of several types of primers, probes and conditions for the amplification. The methods of the rapid control should be based on the use of most modern types of analysis, including multi-primer PCR, hybridization on nucleotide microchips, immunochromatography and ELISA. Prior to the introduction into the practice, internal and external comparative tests of express methods should be executed to confirm their resolution and interlaboratory reproducibility. The introduction of comprehensive methods for the analysis of food viruses, the creation of a monitoring system on their basis, including the order and organization of research, the collection and exchange of information by competent organizations in real time regimen, can significantly increase the effectiveness of investigating outbreaks of viral infections with food transmission, reduce the risk of cross contamination in food enterprises, reduce the likelihood of using raw materials contaminated with viral pathogens in the production process, and improve the safety of food products

About the authors

Natalya R. Efimochkina

Federal Research Centre of nutrition, biotechnology and food safety

Author for correspondence.
Email: karlikanova@ion.ru
ORCID iD: 0000-0002-9071-0326

MD, PhD, DSci., leading researcher of the Laboratory of biosafety and nutrimicrobiome analysis of the Federal Research Centre of nutrition, biotechnology and food safety, Moscow, 109240, Russian Federation.

e-mail: karlikanova@ion.ru

Russian Federation

References

  1. Schultz A.C., Vinje J., NØrring B. Noroviruses. In: Dongyou L., ed. Molecular Detection of Foodborne Pathogens. USA: CRC Press, Taylor & Francis Group; 2010: 75–90.
  2. Mead Р.S., Slutsker L., Dietz V., McCaig L.F., Bresee J.S., Shapiro C. et al. Food-related illness and death in the United States. Emerg. Infect. Dis. 1999; 5 (5): 607–25.
  3. Centers for Diseases Control and Prevention (CDC). Outbreaks of gastroenteritis associated with noroviruses on en ships – United States. MMWR. Morb. Mortal. Wkly Rep. 2002; 51 (49): 1112–4.
  4. Seymour I.J., Appleton H. Foodborne viruses and fresh produce. J. Appl. Mircobiol. 2001; 91: 759–73.
  5. Murphy A.M., Grohmann G.S., Christopher P.J. An Australia-wide outbreak of gastroenteritis from oysters caused by Norwalk virus. Med. J. Austr. 1979; 2 (7): 329–33.
  6. Hewitt J., Bell D., Simmons G.C., Rivera-Aban M., Wolf S., Greening G.E. Gastroenteritis outbreak caused by waterborne norovirus at a New Zealand ski resort. Appl. Environ. Microbiol. 2007; 73 (24): 7853–7.
  7. Maunula L., Miettinen I.T., von Bonsdorff C.H. Norovirus outbreaks from drinking water. Emerg. Infect. Dis. 2005; 11 (11): 1716–21.
  8. Mayanskiy A.N. Microbiology for Physicians [Mikrobiologiya dlya vrachey]. Nizhniy Novgorod: NGMA; 1999. (in Russian)
  9. Halliday M.L., Kang L.Y., Zhou T.K., Hu M.-D., Pan Q.-C., Fu T.-Y. et al. An epidemic of hepatitis A attributable to the ingestion of raw clams in Shanghai, China. J. Infect. Dis. 1991; 164 (5): 852–9.
  10. Centers for Diseases Control and Prevention (CDC). Foodborne transmission of hepatitis A – Massachusetts, 2001. MMWR. Morb. Mortal. Wkly Rep. 2003, 52 (24): 565–7.
  11. Chancellor D.D., Tyagi S., Bazaco M.C. Bacvinskas S., Chancellor M.B., Dato V.M. et al. Green onions: potential mechanism for hepatitis A contamination. J. Food Prot. 2006; 69 (6): 1468–72.
  12. State report “On the state sanitary and epidemiological well being of the population in the Russian Federation in 2014”. Moscow; 2015. (in Russian)
  13. Kamar N., Dalton H.R., Abravanel F., Izopet J. Hepatitis E virus infection. Clin. Microbiol. Rev. 2014, 27 (1): 116–38.
  14. Fujiwara S., Yokokawa Y., Morino K., Hayasaka K., Kawabata M., Shimisu M. Chronic hepatitis E: a review of the literature. J. Viral. Hepat. 2014, 21 (2): 78–89.
  15. Feagins A.R., Opriessing T., Guenette D.K., Halbur P.G., Meng X.-J. Detection and characterization of infectious Hepatitis E virus from commercial pig livers sold in local grocery stores in the USA. J. Gen. Virol. 2007; 88 (Pt. 3): 912–7.
  16. Cherkasskiy B.L. Infectious and Parasitic Human Diseases. Handbook of Epidemiology [Infektsionnye i parazitarnye bolezni cheloveka. Spravochnik epidemiologa]. Moscow: Meditsinskaya gazeta; 1994. (in Russian)
  17. Shinozaki T., Araki K., Fujita Y. Epidemiology of enteric adenoviruses 40 and 41 in acute gastroenteritis in infants and young children in the Tokyo area. Scand. J. Infect. Dis. 1991; 23 (5): 543–7.
  18. Gerba C.P., Rodrigues R.A. Adenoviruses. In: Dongyou L., ed. Molecular Detection of Foodborne Pathogen. USA: CRC Press, Taylor & Francis Group; 2010: 23–32.
  19. Villena C., Gabrieli R., Pinto R.M., Guix S., Donia D., Buonomo E. et al. A large infantile gastroenteritis outbreak in Albania caused by multiple emerging rotavirus genotypes. Epidemiol. Infect. 2003; 131 (3): 1105–10.
  20. Muniain-Mujika I., Calvo M., Lucena F., Girones R. Comparative analysis of viral pathogens and potential indicators in shellfish. Int. J. Food Microbiol. 2003; 83 (1): 75–85.
  21. Meleg E., Jakab F. Asrtoviruses. In: Dongyou L., ed. Molecular Detection of Foodborne Pathogens. USA: CRC Press, Taylor & Francis Group; 2010: 33–48.
  22. Lopman B.A., Reacher M.H., Van Duijnhoven Y., Hanon F.-X., Brown D., Koopmans M. Viral gastroenteritis outbreaks in Europe, 1995–2000. Emerg. Infect. Dis. 2003; 9 (1): 90–6.
  23. Mumford E., Bishop J., Hendrickx S., Embarek P.B., Perdue M. Avian influenza H5N1: risks at the human-animal interface. Food Nutr. Bull. 2007; 28 (2, Suppl.): S357–63.
  24. Subbarao K., Klimov A., Katz J., Regnery H., Lim W., Hall H. et al. Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science. 1998; 279 (5349): 393–6.
  25. Peiris J.S., Yu W.C., Leung C.W., Cheung C.Y., Ng W.F., Nicholls J.M. et al. Re-emergence of fatal human influenza A subtype H5N1 disease. Lancet. 2004; 363 (9409): 617–9.
  26. Onishchenko G.G., Fedorov Yu.M., Toporkov V.P., Kulichenko A.N., Karavaeva T.B., Shiyanova A.E. et al. Atypical pneumonia (SARS) and sanitary protection of the territory. Problemy osobo opasnykh infektsiy. 2003; (1): 3–19. (in Russian)
  27. Patyashina M.A. The scientific basis of sanitary and epidemiological well-being of international events and their implementation on the example of the XXVII world summer Universiade in Kazan: Diss. Saratov; 2015. (in Russian)
  28. Shope R.E. Swine influenza: III. Filtration experiments and etiology. J. Exp. Med. 1931; 54 (3): 373–85.
  29. Garten R.J., Davis C.T., Russell C.A., Shu Bo, Lindstrom S., Balish A. et al. Antigenic and genetic characteristics of swine-origin 2009 A (H1N1) influenza viruses circulating in humans. Science. 2009; 325 (5937): 197–201.
  30. van Reeth K. Avian and swine influenza viruses: our current understanding of the zoonotic risk. Vet. Res. 2007; 38 (2): 243–60.
  31. Irvine R.M., Brown I.H. Novel H1N1 influenza in people: global spread from an animal source? Vet. Res. 2009; 164 (19): 577–8.
  32. Cohen J. Swine flu outbreak: new details on virus’s promiscuous past. Science. 2009; 324: 1127.
  33. Smith G.J., Vijaykrishna D., Bahl J., Lycett S.J., Worobey M., Pybus O.G. et al. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature. 2009; 459 (7250): 1122–5.
  34. Lange E., Kalthoff D., Blohm U. Teifke J. P., Breithaupt A., Maresch C. et al. Pathogenesis and transmission of the novel swine-origin influenza virus A/H1N1 after experimental infection of pigs. J. Gen. Virol. 2009; 90 (9): 2119–23.
  35. Brookes S.M., Irvine R.M., Nunez V.M. Influenza A (H1N1) infection in pigs. Vet. Res. 2009; 164: 760–1.
  36. WHO information for laboratory diagnostics of pandemic (H1N1)2009 virus in humans – revised. Nov. 2009. Available at: http://www.who.int/csr/resources/publications/swineflu/diagnostic_recommendations/en/index.html
  37. Centers for Diseases Control and Prevention (CDC). Evaluation of Rapid Influenza Diagnostic tests for detection of novel Influenza A (H1N1) virus – United States, 2009. MMWR. Morb. Mortal. Wkly Rep. 2009; 58 (30): 826–9.
  38. da Silva A.K., Le Saux J.C., Parnaudeau S., Pommepuy M., Elimelech M., Le Guyader F.S. Evaluation of removal of noroviruses during wastewater treatment, using real-time reverse transcription-PCR: different behaviors of genogroups I and II. Appl. Environ. Microbiol. 2007;73 (24): 7891–7.
  39. Svraka S., Duizer E., Vennema H., de Bruin E.n, van der Veer B., Dorresteijn B. et al. Etiological role of viruses in outbreaks of acute gastroenteritis in the Netherlands from 1994 through 2005. J. Clin. Microbiol. 2007; 45 (5): 1389–94.
  40. Jothikumar N., Lowther J.A., Henshilwood K., Lees D.N., Hill V.R., Vinjé J. Rapid and sensitive detection of noroviruses by using TaqMan-based one-step reverse transcription-PCR assays and application to naturally contaminated shellfish samples. Appl. Environ. Microbiol. 2005; 71 (4): 1870–5.
  41. Loisy F., Atmar R.L., Guillon P., Cann P., Le Pommepuy M., Le Guyader F.S. Real-time RT-PCR for norovirus screening in shellfish. J. Virol. Meth. 2005; 123 (1): 1–7.
  42. Kageyama T., Kojima S., Shinohara M., Uchida K., Fukushi S., Hoshino F.B. et al. Broadly reactive and highly sensitive assay for Norwalk-like viruses based on real-time quantitative reverse transcription-PCR. J. Clin. Microbiol. 2003; 41 (4); 1548–57.
  43. Trujillo A.A., McCaustland K.A., Zheng D.P., Hadley L.A., Vaughn G., Adams S.M. et al. Use of TaqMan real-time reverse transcription-PCR for rapid detection, quantification, and typing of norovirus. J. Clin. Microbiol. 2006; 44 (4): 1405–12.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Efimochkina N.R.



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 37884 от 02.10.2009.