Hygienic and biochemical aspects of the effect of mercury on the human body (literature review)
- Authors: Lysenko A.A.1
-
Affiliations:
- East Siberian Institute of Medical and Environmental Research
- Issue: Vol 103, No 11 (2024)
- Pages: 1447-1451
- Section: HEALTH RISK ASSESSMENT
- Published: 15.12.2024
- URL: https://ruspoj.com/0016-9900/article/view/646131
- DOI: https://doi.org/10.47470/0016-9900-2024-103-11-1447-1451
- EDN: https://elibrary.ru/jfebym
- ID: 646131
Cite item
Abstract
In the modern world, against the background of high rates of industrialization and economic progress, environmental safety problems are becoming more acute. The issues of industrial mercury pollution of environmental objects, which has adverse consequences for public health, are relevant. The main mechanisms of mercury impact on the human body have been identified, and further study of the effects of low doses of the toxicant over the long-term follow-up period is also necessary.The literature on the databases Scopus, Web of Science, MedLine, SpringerLink, Sciencedirect was analyzed.
Conclusion. There are cases in the world when environmental disasters caused by global pollution caused irreparable harm to human health. At the present stage of industrial development, the issues of anthropogenic mercury pollution of habitat objects remain relevant. The danger of chronic exposure to low doses of the toxicant comes to the fore, which also requires further study to develop preventive measures to offset the impact on public health.
Conflict of interest. The authors declare no conflict of interest.
Acknowledgement. The study had no sponsorship.
Received: August 23, 2024 / Revised: September 27, 2024 / Accepted: November 19, 2024 / Published: December 17, 2024
About the authors
Anastasia A. Lysenko
East Siberian Institute of Medical and Environmental Research
Author for correspondence.
Email: doc.anastasia07.07.90@gmail.com
PhD student, doctor of the clinical laboratory of the East Siberian Institute of Medical and Environmental Research, Angarsk, 665826, Russian Federation
e-mail: doc.anastasia07.07.90@gmail.com
References
- Wang L., Ma Y., Lin W. A coumarin-based fluorescent probe for highly selective detection of hazardous mercury ions in living organisms. J. Hazard. Mater. 2024; 461: 132604. https://doi.org/10.1016/j.jhazmat.2023.132604
- Esteban-López M., Arrebola J.P., Juliá M., Pärt P., Soto E., Cañas A., et al. Selecting the best non-invasive matrix to measure mercury exposure in human biomonitoring surveys. Environ. Res. 2022; 204(Pt. D): 112394. https://doi.org/10.1016/j.envres.2021.112394
- Guo X., Li N., Wang H., Su W., Song Q., Liang Q., et al. Combined exposure to multiple metals on cardiovascular disease in NHANES under five statistical models. Environ. Res. 2022; 215(Pt. 3): 114435. https://doi.org/10.1016/j.envres.2022.114435
- Fu Z, Xi S. The effects of heavy metals on human metabolism. Toxicol. Mech. Methods. 2020; 30(3):167–76. https://doi.org/10.1080/15376516.2019.1701594
- Mestanza-Ramón C., Jiménez-Oyola S., Gavilanes Montoya A.V., Vizuete D.D.C., D’Orio G., Cedeño-Laje J., et al. Human health risk assessment due to mercury use in gold mining areas in the Ecuadorian Andean region. Chemosphere. 2023; 344: 140351. https://doi.org/10.1016/j.chemosphere.2023.140351
- Rakitskii V.N., Synitskaya T.A., Skupnevskii S.V. Current issues of environmental mercury pollution (review). Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2020; 99(5): 460–7. https://doi.org/10.47470/0016-9900-2020-99-5-460-467 https://elibrary.ru/cxkmri (in Russian)
- WHO. Mercury and health. Basic facts; 2017. Available at: https://who.int/news-room/fact-sheets/detail/mercury-and-health
- WHO. Report of the Conference of the Parties to the Minamata Convention on Mercury on its fifth meeting; 2023.
- Li C., Shen J., Zhang J., Lei P., Kong Y., Zhang J., et al. The silver linings of mercury: Reconsideration of its impacts on living organisms from a multi-timescale perspective. Environ. Int. 2021; 155: 106670. https://doi.org/10.1016/j.envint.2021.106670
- Ha E., Basu N., Bose-O’Reilly S., Dórea J.G., McSorley E., Sakamoto M., et al. Current progress on understanding the impact of mercury on human health. Environ. Res. 2017; 152: 419–33. https://doi.org/10.1016/j.envres.2016.06.042
- Harada M. Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Crit. Rev. Toxicol. 1995; 25(1): 1–24. https://doi.org/10.3109/10408449509089885
- Ceccatelli S., Daré E., Moors M. Methylmercury-induced neurotoxicity and apoptosis. Chem. Biol. Interact. 2010; 188(2): 301–8. https://doi.org/10.1016/j.cbi.2010.04.007
- Vanchugova V.A. Complex assessment of impacts on the environment of consequences of technologenic. Archivarius. 2017; 3(18): 36–41. https://elibrary.ru/yrprzb (in Russian)
- Efimova N.V., Koval P.V., Rukavishnikov V.S., Bezgodov I.V. Problems associated with mercury pollution of environmental objects. Byulleten’ Vostochno-Sibirskogo nauchnogo tsentra Sibirskogo otdeleniya Rossiiskoi akademii meditsinskikh nauk. 2005; (1): 127–33. https://elibrary.ru/kzzfjf (in Russian)
- Koval P.V., Kalmychkov G.V., Lavrov S.M., Butakov E.V., Alieva V.I., Lavrov S.M., et al. Anthropogenic component and mercury balance in ecosystem of the Bratsk hydropower reservoir. Doklady Akademii nauk. 2003; 388(2): 225–7. https://elibrary.ru/lhvfih (in Russian)
- Pastukhov M.V., Grebenshchikova V.I., Shevelova N.G. Assessment of mercury accumulation by different groups of plankton of the Bratsk Reservoir. In: Problems of Geochemistry of Endogenous Processes in the Environment. Volume 1 [Problemy geokhimii endogennykh protsessov v okruzhayushchei srede. Tom 1]. Irkutsk; 2007: 214–8. (in Russian)
- Farina M., Aschner M., Rocha J.B. Oxidative stress in MeHg-induced neurotoxicity. Toxicol. Appl. Pharmacol. 2011; 256(3): 405–17. https://doi.org/10.1016/j.taap.2011.05.001
- Bhattacharya S. Can the toxic heavy metals be beneficial at trace levels? Understanding their outranged biological functions. J. Environ. Pathol. Toxicol. Oncol. 2024; 43(1): 71–7. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2023049292
- Gorbunov A.V., Lyapunov S.M., Okina O.I., Sheshukov V.S. Intake assessment of small does of mercury in the human body with food. Ecologiya cheloveka. 2017; (10): 16 –20 (in Russian)
- Krasnopeeva I.Yu. Mercury intoxication. Sibirskii meditsinskii zhurnal (Irkutsk). 2005; 57(7): 104–8. https://elibrary.ru/jrgyxz (in Russian)
- Chan T.Y. Inorganic mercury poisoning associated with skin-lightening cosmetic products. Clin. Toxicol. (Phila). 2011; 49(10): 886–91. https://doi.org/10.3109/15563650.2011.626425
- Tang H.L., Mak Y.F., Chu K.H., Lee W., Fung S.K., Chan T.Y., et al. Minimal change disease caused by exposure to mercury-containing skin lightening cream: a report of 4 cases. Clin. Nephrol. 2013; 79(4): 326–9.
- Akhtar A., Kazi T.G., Afridi H.I., Khan M. Human exposure to toxic elements through facial cosmetic products: Dermal risk assessment. Regul Toxicol Pharmacol. 2022; 131: 105145. https://doi.org/10.1016/j.yrtph.2022.105145
- Palmer R.B., Godwin D.A., McKinney P.E. Transdermal kinetics of a mercurous chloride beauty cream: an in vitro human skin analysis. J. Toxicol. Clin. Toxicol. 2000; 38(7): 701–7. https://doi.org/10.1081/clt-100102383
- Ramli F.F. Clinical management of chronic mercury intoxication secondary to skin lightening products: A proposed algorithm. Bosn. J. Basic Med. Sci. 2021; 21(3): 261–9. https://doi.org/10.17305/bjbms.2020.4759
- Lakhman O.L., Katamanova E.V., Konstantinova T.N., Shevchenko O.I., Mesherjagin V.A., Andreeva O.K., et al. Contemporary approaches to the classification of occupational mercury intoxication. Ekologiya cheloveka. 2009; (12): 22–7. https://elibrary.ru/kyzpob (in Russian)
- Savchenkov M.F., Rukavishnikov V.S., Efimova N.V. Environmental mercury and its influence on population health (on example of Baikal region). Sibirskii meditsinskii zhurnal (Irkutsk). 2010; 99(8): 9–11. https://elibrary.ru/nhoebf (in Russian)
- Korotkov S.M. Mitochondrial oxidative stress is the general reason for apoptosis induced by different-valence heavy metals in cells and mitochondria. Int. J. Mol. Sci. 2023; 24(19): 14459. https://doi.org/10.3390/ijms241914459
- Masnavieva L.B., Budarina L.A., Kudaeva I.V. Indices of antioxidant protection and lipid peroxidation in persons with neurointoxication in long-term period after exposure. Byulleten’ Vostochno-Sibirskogo nauchnogo tsentra Sibirskogo otdeleniya Rossiiskoi akademii meditsinskikh nauk. 2010; (4): 115–8. https://elibrary.ru/ogutwd (in Russian)
- Abbott L.C., Nigussie F. Mercury toxicity and neurogenesis in the mammalian brain. Int. J. Mol. Sci. 2021; 22(14): 7520. https://doi.org/10.3390/ijms22147520
- Farina M., Avila D.S., da Rocha J.B., Aschner M. Metals, oxidative stress and neurodegeneration: a focus on iron, manganese and mercury. Neurochem Int. 2013; 62(5): 575-94. https://doi.org/10.1016/j.neuint.2012.12.006
- Rukavishnikov V.S., Lakhman O.L., Sosedova L.M., Shayakhmetov S.F., Bodienkova G.M., Kudayeva I.V., et al. Occupational neurointoxications: patterns and mechanisms of formation. Meditsina truda i promyshlennaya ekologiya. 2014; 54(4): 1–6. https://elibrary.ru/sceviv (in Russian)
- Katamanova E.V., Shevchenko O.I., Lakhman O.L., Brezhneva I.A., Proskokov K.M. Disorders of higher psychical functions in encephalopathy of different genesis. Byulleten’ Vostochno-Sibirskogo nauchnogo tsentra Sibirskogo otdeleniya Rossiiskoi akademii meditsinskikh nauk. 2012; (1): 26–31. https://elibrary.ru/pbtylj (in Russian)
- Kudayeva I.V., Masnavieva L.B., Popkova O.V., Dyakovitch O.A. Neurochemical parameters change in individuals exposed to mercury vapors. Meditsina truda i promyshlennaya ekologiya. 2015; 55(4): 11–5. https://elibrary.ru/trllpl (in Russian)
- Levin Ya.I. Neurochemical medicine. Sovremennaya terapiya psikhicheskikh rasstroistv. 2008; (1): 4–8. https://elibrary.ru/taxuit (in Russian)
- Grigorova O.V., Akhapkin R.V., Aleksandrovskii Yu.A. Modern concepts of pathogenetic therapy of anxiety disorders. Zhurnal nevrologii i psikhiatrii im. C.C. Korsakova. 2019; 119(10): 111–20. https://doi.org/10.17116/jnevro2019119101111 (in Russian)
- Kang P., Shin H.Y., Kim K.Y. Association between Dyslipidemia and Mercury Exposure in Adults. Int J. Environ. Res. Public Health. 2021;18(2): 775. https://doi.org/10.3390/ijerph18020775
- Wang G., Fang L., Chen Y., Ma Y., Zhao H., Wu Y., et al. Association between exposure to mixture of heavy metals and hyperlipidemia risk among U.S. adults: A cross-sectional study. Chemosphere. 2023; 344: 140334. https://doi.org/10.1016/j.chemosphere.2023.140334
- Kudaeva I.V., Dyakovich O.A., Masnavieva L.B., Dyakovich M.P., Shayakhmetov S.F. Forecasting the atherogenic index values in works exposed to mercury. Meditsina truda i promyshlennaya ekologiya. 2017; 57(10): 34–8. https://elibrary.ru/ztuvil (in Russian)
- Kudayeva I.V., Budarina L.A. Biochemical indexes modification at exposure of metallic mercury vapours. Byulleten’ Vostochno-Sibirskogo nauchnogo tsentra Sibirskogo otdeleniya Rossiiskoi akademii meditsinskikh nauk. 2012; (6): 24–7. https://elibrary.ru/pjbopf (in Russian)
- Liang J.H., Pu Y.Q., Liu M.L., Hu L.X., Bao W.W., Zhang Y.S., et al. Joint effect of whole blood metals exposure with dyslipidemia in representative US adults in NHANES 2011-2020. Environ. Sci. Pollut. Res. Int. 2023; 30(42): 96604–16. https://doi.org/10.1007/s11356-023-28903-0
- Yao X., Steven Xu X., Yang Y., Zhu Z., Zhu Z., Tao F., et al. Stratification of population in NHANES 2009–2014 based on exposure pattern of lead, cadmium, mercury, and arsenic and their association with cardiovascular, renal and respiratory outcomes. Environ. Int. 2021; 149: 106410. https://doi.org/10.1016/j.envint.2021.106410
- Lee S., Cho S.R., Jeong I., Park J.B., Shin M.Y., Kim S., et al. Mercury exposure and associations with hyperlipidemia and elevated liver enzymes: a nationwide cross-sectional survey. Toxics. 2020; 8(3): 47. https://doi.org/10.3390/toxics8030047
- Ayotte P., Carrier A., Ouellet N., Boiteau V., Abdous B., Sidi E.A., et al. Relation between methylmercury exposure and plasma paraoxonase activity in Inuit adults from Nunavik. Environ. Health Perspect. 2011; 119(8): 1077–83. https://doi.org/10.1289/ehp.1003296
- Borovkova E.I., Antipova N.V., Korneenko T.V., Shakhparonov M.I., Borovkov I.M. Paraoxonase: the universal factor of antioxidant defense in human body. Vestnik Rossiiskoi akademii meditsinskikh nauk. 2017; 72(1): 5–10. https://doi.org/10.15690/vramn764 https://elibrary.ru/yfyipx (in Russian)
- Ivanova E.S., Shuvalova O.P., Eltsova L.S., Komov V.T., Kornilova A.I. Cardiometabolic risk factors and mercury content in hair of women from a territory distant from mercury-rich geochemical zones (Cherepovets city, Northwest Russia). Environ. Geochem Health. 2021; 43(11): 4589–99. https://doi.org/10.1007/s10653-021-00939-6
- Choi S., Kwon J., Kwon P., Lee C., Jang S.I. Association between blood heavy metal levels and predicted 10-year risk for a first atherosclerosis cardiovascular disease in the general Korean population. Int. J. Environ. Res. Public Health. 2020; 17(6): 2134. https://doi.org/10.3390/ijerph17062134
- Houston M.C. The role of mercury and cadmium heavy metals in vascular disease, hypertension, coronary heart disease, and myocardial infarction. Altern. Ther Health Med. 2007; 13(2): S128–33.
- Naumova O.V., Kudaeva I.V., Masnavieva L.B., Dyakovich O.A. Markers of vascular tone and inflammation in persons exposed to mercury. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2019; 98(10): 1079–84. https://doi.org/10.18821/0016-9900-2019-98-10-1079-1084 https://elibrary.ru/juvirm (in Russian)
- Naumova O.V., Kudaeva I.V., Masnavieva L.B., Dyakovich O.A. Role of intercellular adhesion molecules and antibodies to oxidized LDL in pathogenesis of cardiovascular diseases under mercury exposure. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2020; 99(10): 1120–6. https://doi.org/10.47470/0016-9900-2020-99-10-1120-1126 https://elibrary.ru/kefivb (in Russian)
Supplementary files
