Determination of an environmentally safe concentration of germanium in ordinary chernozem

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Introduction. Germanium (Ge) is a valuable chemical element for the technological sphere. In recent years, Ge has been increasingly used in various branches of high-tech industry: in the creation of fiber and infrared optics, as well as as polymerization catalysts in the production of polyethylene terephthalate (PET).
In soils contaminated with mining waste, the Ge content ranges from 1.45 to 7.91 mg/kg. The maximum permissible concentrations (MPC) of Ge in the soil have not been developed, accordingly, it seems relevant to conduct a comprehensive assessment of the effect of Ge on biological indicators of soil condition and establish an environmentally safe concentration of Ge in the soil.
Materials and methods. In a laboratory experiment, the ecotoxicity of 3, 30, and 300 Ge background concentrations (BC) on 10th, 30th, and 90th day was evaluated using biodiagnostic methods. All the studied indicators were included in the calculation of the integral indicator of the biological state (IIBS) of the soil. In case of contamination with Ge there was diagnosed the sequence of violations of the ecosystem functions of the soil according to the degree of decrease in IIBS. The dose of the element, under the influence of which there is a violation of the integral functions of the soil, characterizing the degree of the soil fertility, is defined as an environmentally safe concentration of Ge in this soil.
Results. With an increase in the Ge dose in the soil, the ecotoxic effect of the impact of the mineral on catalase and dehydrogenases activity, the abundance of bacteria of the genus Azotobacter, cellulolytic activity, germination and length of radish roots increased. After Ge contamination of the soil, the maximum toxicity was revealed for the indicators studied on the 10th and 30th das. The radish root length index showed the greatest sensitivity to Ge soil contamination compared with the indicator of dehydrogenases activity. The strongest correlation was noted between the Ge content in the soil and catalase activity. An environmentally safe concentration of Ge in the soil has been established – 6.5 mg/kg. The obtained results on the assessment of ecotoxicity of soils contaminated with Ge can be used to diagnose the ecological state of soils.
Limitations. The proposed environmentally safe concentrations in Ge soils are applicable, first, for ordinary chernozem.
Conclusion. An increase in background concentrations of Ge in the soil inhibited the biological parameters of ordinary chernozem. The maximum ecotoxic effect of Ge on the studied parameters was demonstrated on 10th and 30th days. The length of radish roots is most sensitive to Ge soil contamination compared to the indicator of dehydrogenase activity. The strongest correlation was noted between the Ge content in the soil and catalase activity. An environmentally safe Ge concentration in the soil has been established – 6.5 mg/kg. The obtained results on the assessment of ecotoxicity of soils contaminated with Ge can be used for diagnostics and as an indicator of the ecological state of soils.

About the authors

Natalya I. Tsepina

Southern Federal University

PhD (Biology), Senior Researcher, Academy of Biology and Biotechnology named after D.I. Ivanovsky, Southern Federal University, Rostov-on-Don, 344090, Russian Federation

Sergey I. Kolesnikov

Southern Federal University

DSc (Agriculture), Professor, Head of the Department, Academy of Biology and Biotechnology named after D.I. Ivanovsky, Southern Federal University, Rostov-on-Don, 344090, Russian Federation

Tatiana V. Minnikova

Southern Federal University

Email: loko261008@yandex.ru
PhD (Biology), Leading Researcher, Academy of Biology and Biotechnology named after D.I. Ivanovsky, Southern Federal University, Rostov-on-Don, 344090, Russian Federation

Anna A. Kuzina

Southern Federal University

PhD (Biology), Senior Researcher, Academy of Biology and Biotechnology named after D.I. Ivanovsky, Southern Federal University, Rostov-on-Don, 344090, Russian Federation

Tatiana M. Minkina

Southern Federal University

DSc (Biology), Professor, Head of the Department, Academy of Biology and Biotechnology named after D.I. Ivanovsky, Southern Federal University, Rostov-on-Don, 344090, Russian Federation

References

  1. Wiche O., Heilmeier H. Germanium (Ge) and rare earth element (REE) accumulation in selected energy crops cultivated on two different soils. Miner. Eng. 2016; 92: 208–15. https://doi.org/10.1016/j.mineng.2016.03.023
  2. Curtolo D.C., Friedrich S., Friedrich B. High purity germanium, a review on principle theories and technical production methodologies. J. Cryst. Process Technol. 2017; 7(4): 65–84. https://doi.org/10.4236/jcpt.2017.74005
  3. Zhang L., Xu Z. Application of vacuum reduction and chlorinated distillation to enrich and prepare pure germanium from coal fly ash. J. Hazard. Mater. 2017; 321: 18–27. https://doi.org/10.1016/j.jhazmat.2016.08.070
  4. Moskalyk R.R. Review of germanium processing worldwide. Miner. Eng. 2004; 17(3): 393–402. https://doi.org/10.1016/j.mineng.2003.11.014
  5. Арбузов С.И., Чекрыжов И.Ю., Ильенок С.С., Соктоев Б.Р., Соболева Е.Е. Новые данные по геохимии и условиям образования германий-угольного месторождения спецугли (Приморский край). Известия Томского политехнического университета. Инжиниринг георесурсов. 2021; 332(5): 17–38. https://elibrary.ru/dtppmd
  6. Вялов В.И., Олейникова Г.А., Наставкин А.В. Особенности распределения германия в углях Павловского месторождения. Химия твердого топлива. 2020; (3): 42–9. https://doi.org/10.31857/S0023117720030111 https://elibrary.ru/pmfinx
  7. Schreiter N., Wiche O., Aubel I., Roode-Gutzmer Q., Bertau M. Determination of germanium in plant and soil samples using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR CS GFAAS) with solid sampling. J. Geochem. Explor. 2021; 220: 106674. https://doi.org/10.1016/j.gexplo.2020.106674
  8. Cheng W., Lei S., Bian Z., Zhao Y., Li Y., Gan Y. Geographic distribution of heavy metals and identification of their sources in soils near large, open-pit coal mines using positive matrix factorization. J. Hazard. Mater. 2020; 387: 121666. https://doi.org/10.1016/j.jhazmat.2019.121666
  9. Крылов Д.А. Негативное воздействие микроэлементов, содержащихся в углях, в золошлаковых отвалах и в золе-уносе угольных ТЭС, на окружающую среду и здоровье людей. М.; 2012. https://elibrary.ru/qmlrzx
  10. Алексеенко В.А., Алексеенко А.В. Химические элементы в геохимических системах. Кларки почв селитебных ландшафтов. Ростов-на-Дону; 2013. https://elibrary.ru/ttoxiv
  11. Wiche O., Székely B., Moschner C., Heilmeier H. Germanium in the soil-plant system-a review. Environ. Sci. Pollut. Res. Int. 2018; 25(32): 31938–56. https://doi.org/10.1007/s11356-018-3172-y
  12. Négrel P., Ladenberger A., Reimann C., Birke M., Sadeghi M. Team GEMAS: Source, distribution patterns and geochemical behaviour of Ge in agricultural and grazing land soils at European continental scale. Appl. Geochem. 2016; 72: 113–24. https://doi.org/10.1016/j.apgeochem.2016.07.004
  13. Midula P., Wiche O., Wiese P., Andráš P. Concentration and bioavailability of toxic trace elements, germanium, and rare earth elements in contaminated areas of the Davidschacht dump-field in Freiberg (Saxony). Freiberg Ecol. Online. 2017; 1(2): 101–12.
  14. Jabłońska-Czapla M., Grygoyć K., Rachwał M., Fornalczyk A., Willner J. Germanium speciation study in soil from an electronic waste processing plant area. J. Soils Sediments. 2023; 23: 3362–75. https://doi.org/10.1007/s11368-023-03566-z
  15. Luo X., Sun J., Kong D., Lei Y., Gong F., Zhang T., et al. The role of germanium in diseases: exploring its important biological effects. J. Transl. Med. 2023; 21(1): 795. https://doi.org/10.1186/s12967-023-04643-0
  16. Lin C.H., Chen S.S., Lin Y.C., Lee Y.S., Chen T.J. Germanium dioxide induces mitochondria-mediated apoptosis in Neuro-2A cells. Neurotoxicology. 2006; 27(6): 1052–63. https://doi.org/10.1016/j.neuro.2006.05.018
  17. Ma Y.H., Huang C.P., Tsai J.S., Shen M.Y., Li Y.K., Lin L.Y. Water-soluble germanium nanoparticles cause necrotic cell death and the damage can be attenuated by blocking the transduction of necrotic signaling pathway. Toxicol. Lett. 2011; 207(3): 258–69. https://doi.org/10.1016/j.toxlet.2011.09.018
  18. Lin C.H., Chen T.J., Chen S.S. Functional changes on ascending auditory pathway in rats caused by germanium dioxide exposure: an electrophysiological study. Toxicology. 2009; 256(1–2): 110–7. https://doi.org/10.1016/j.tox.2008.11.009
  19. Sellappa S., Jeyaraman V. Antibacterial properties of organic germanium against some human pathogens. Int. J. Pharma Bio Sci. 2011; 2(1): 854–9.
  20. Ma J.F., Tamai K., Ichii M., Wu G.F. A rice mutant defective in Si uptake. Plant. Physiol. 2002; 130(4): 2111–7. https://doi.org/10.1104/pp.010348
  21. Kolesnikov S.I., Kazeev K.S., Akimenko Y.V. Development of regional standards for pollutants in the soil using biological parameters. Environ. Monit. Assess. 2019; 191(9): 544. https://doi.org/10.1007/s10661-019-7718-3
  22. Казеев К.Ш., Колесников С.И., Акименко Ю.В., Даденко Е.В. Методы биодиагностики наземных экосистем. Ростов-на-Дону; 2016. https://elibrary.ru/xvousx
  23. Соседова Л.М., Новиков М.А., Титов Е.А. Воздействие наночастиц металлов на почвенный биоценоз (обзор литературы). Гигиена и санитария. 2020; 99(10): 1061–6. https://doi.org/10.47470/0016-9900-2020-99-10-1061-1066 https://elibrary.ru/bljjgm
  24. Терехова В.А. Биотестирование экотоксичности почв при химическом загрязнении: современные подходы к интеграции для оценки экологического состояния (обзор). Почвоведение. 2022; (5): 586–99. https://elibrary.ru/raqefc
  25. Дикарев А.В., Дикарев В.Г., Дикарева Н.С. Исследование фитотоксичности свинца для растений редиса и салата при выращивании на разных типах почв. Агрохимия. 2019; (6): 72–80. https://doi.org/10.1134/S0002188119030050 https://elibrary.ru/zhjvpp
  26. Бабьева М.А., Зенова Н.К. Биология почв. М.; 1989. https://elibrary.ru/qksrzn
  27. Галстян А.Ш. Проблемы и методы биологической диагностики и индикации почв. В кн.: Всесоюзное совещание «Проблемы и методы биологической диагностики и индикации почв». М.; 1976. https://elibrary.ru/xpyxyd
  28. Хазиев Ф.Х. Методы почвенной энзимологии. М.: Наука; 1990. https://elibrary.ru/vyscsv
  29. Кузина А.А., Колесников С.И., Минникова Т.В., Неведомая Е.Н., Тер-Мисакянц Т.А., Казеев К.Ш. Подходы к разработке экологических региональных нормативов содержания свинца в почвах Черноморского побережья Кавказа на основе интегрального показателя биологического состояния почвы. Гигиена и санитария. 2022; 101(3): 262–9. https://doi.org/10.47470/0016-9900-2022-101-3-262-269 https://elibrary.ru/kocucf
  30. Добровольский Г.В., Никитин Е.Д. Экология почв. Учение об экологических функциях почв. М.: Наука; 2006.
  31. Choi I.W., Seo D.C., Han M.J., DeLaune R.D., Ok Y.S., Jeon W.T., et al. Accumulation and toxicity of germanium in cucumber under different types of germaniums. Commun. Soil. Sci. Plant. Anal. 2013; 44(20): 3006–19. https://doi.org/10.1080/00103624.2013.829083
  32. Kolesnikov S., Minnikova T., Minkina T., Rajput V.D., Tsepina N., Kazeev K., et al. Toxic effects of thallium on biological indicators of Haplic Chernozem health: a case study. Environments. 2021; 8(11): 119. https://doi.org/10.3390/environments8110119

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 37884 от 02.10.2009.