Genetic risk factors for the development of vibration disease (literature review)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Vibration disease (VD) occupies one of the leading places in occupational pathology. This disease is characterized by the complexity of pathogenetic mechanisms, polysyndromicity, chronic course, resistance to therapy, and often leads to disability and disablement in patients. Among the possible risk factors for the development of VD, the attention of researchers is paid to genetic predisposition. The work summarizes the results of modern research on the identification of candidate genes and their polymorphisms that determine predisposition to the occurrence of VD and a number of other diseases that have similar pathogenetic mechanisms. The literature search was carried out in the English text databases PubMed, Scopus, Web of Science and in the scientific electronic library eLIBRARY.ru (RSCI). The review examines polymorphisms of some genes of phase I of xenobiotic detoxification, a family of cation channels with transient receptor potential, superoxide dismutases, glutathione peroxidases, epoxide hydrolases, matrix metalloproteinases, caspases, endothelial nitric oxide synthase, heat shock proteins, folate cycle, sirtuins, endothelins, angiotensin-converting enzyme, serotonin receptor genes, as well as interleukins and tumor necrosis factor genes. Based on literature data, a complex mechanism of interaction between different genes can be assumed to be involved in the formation and development of VD. The results of molecular genetic studies confirm the pathogenetic complexity and polymorphism of the symptoms of VD. Further search and study of new genetic predictors of VD development is required. The data obtained will not only expand our understanding of the pathogenesis and mechanisms of VD development, but also provide tools for prediction and a personalized approach to prevention and treatment.

About the authors

Guzel F. Mukhammadiyeva

Ufa Research Institute of Occupational Health and Human Ecology

Email: ufniimt@mail.ru
PhD (Biology), Senior Researcher at the Department of Toxicology and Genetics with the Experimental Clinics for Laboratory Animals, Ufa Research Institute of Occupational Health and Human Ecology, Ufa, 450106, Russian Federation

Elmira R. Shaihlislamova

Ufa Research Institute of Occupational Health and Human Ecology; Bashkir State Medical University

Email: fbun@uniimtech.ru
PhD (Medicine), Director, Ufa Research Institute of Occupational Health and Human Ecology, Ufa, 450106, Russian Federation

Denis D. Karimov

Ufa Research Institute of Occupational Health and Human Ecology

Email: lich-tsar@mail.ru
PhD (Biology), Senior Researcher at the Department of Toxicology and Genetics with the Experimental Clinics for Laboratory Animals, Ufa Research Institute of Occupational Health and Human Ecology, Ufa, 450106, Russian Federation

Denis O. Karimov

Ufa Research Institute of Occupational Health and Human Ecology; N.A. Semashko National Research Institute of Public Health»

Email: karimovdo@gmail.com
PhD (Medicine), Head of the Department of Toxicology and Genetics with the Experimental Clinics for Laboratory Animals, Ufa Research Institute of Occupational Health and Human Ecology, Ufa, 450106, Russian Federation

References

  1. Мухина Н.А., Бабанова С.А. Профессиональные болезни. М.: ГЭОТАР-Медиа; 2018.
  2. Шайхлисламова Э.Р., Валеева Э.Т., Волгарева А.Д., Кондрова Н.С., Галимова Р.Р., Масягутова Л.М. Профессиональные заболевания от воздействия физических факторов в Республике Башкортостан. Медицина труда и экология человека. 2018; (4): 63–9. https://elibrary.ru/ypnmfv
  3. Бабанов С.А., Азовскова Т.А., Вакурова Н.В., Бараева Р.А. О современных аспектах классификации вибрационной болезни. Терапевт. 2019; (4): 21–7. https://elibrary.ru/zcqfgh
  4. Бабанов С.А., Азовскова Т.А., Кирюшина Т.М., Лотков В.С., Агар-кова А.С., Безшанова А.Е. и др. Вибрационная болезнь: эволюция классификационных представлений, диагностика, вопросы экспертизы. Врач. 2023; 34(4): 11–7. https://doi.org/10.29296/25877305-2023-04-02 https://elibrary.ru/ezyjlk
  5. Скоромец А.А. Туннельные компрессионно-ишемические моно- и мультиневропатии. М.: ГЭОТАР-Медиа; 2022.
  6. Бабанов С.А., Азовскова Т.А., Бараева Р.А. Влияние производственной вибрации на организм работников всех отраслей. Охрана труда и техника безопасности в сельском хозяйстве. 2020; (2): 35–44. https://elibrary.ru/bczcbh
  7. Morioka M., Whitehouse D.J., Griffin M.J. Vibrotactile thresholds at the fingertip, volar forearm, large toe, and heel. Somatosens Mot. Res. 2008; 25(2): 101–12. https://doi.org/10.1080/08990220802045574
  8. Thompson A.M., House R., Krajnak K., Eger T. Vibration-white foot: a case report. Occup. Med (Lond.). 2010; 60(7): 572–4. https://doi.org/10.1093/occmed/kqq107
  9. House R., Jiang D., Thompson A., Eger T., Krajnak K., Sauvé J., et al. Vasospasm in the feet in workers assessed for HAVS. Occup. Med (Lond). 2011; 61(2): 115–20. https://doi.org/10.1093/occmed/kqq191
  10. Eger T., Thompson A., Leduc M., Krajnak K., Goggins K., Godwin A., et al. Vibration induced white-feet: overview and field study of vibration exposure and reported symptoms in workers. Work. 2014; 47(1): 101–10. https://doi.org/10.3233/WOR-131692
  11. Pyykkö I., Färkkilä M., Inaba R., Starck J., Pekkarinen J. Effect of hand-arm vibration on inner ear and cardiac functions in man. Nagoya J. Med. Sci. 1994; 57(Suppl.): 113–9.
  12. Harada N. Autonomic nervous function of hand-arm vibration syndrome patients. Nagoya J. Med. Sci. 1994; 57(Suppl.): 77–85.
  13. Жукова А.Г., Горохова Л.Г. Ретроспектива молекулярно-генетических исследований производственно обусловленной патологии. Медицина в Кузбассе. 2020; 20(3): 5–11. https://doi.org/10.24412/2687-0053-2021-3-5-11 https://elibrary.ru/xwxgem
  14. Баранов В.С. Геномика и предиктивная медицина. Сибирский журнал клинической и экспериментальной медицины. 2021; 36(4): 14–28. https://doi.org/10.29001/2073-8552-2021-36-4-14-28 https://elibrary.ru/kkkzma
  15. Ядыкина Т.К., Коротенко О.Ю., Семенова Е.А., Бугаева М.С., Жукова А.Г. Исследование генов глутатион-S-трансфераз (GST) T1 и M1 у работников алюминиевой промышленности с коморбидной кардио-васкулярной патологией. Медицина труда и промышленная экология. 2023; 63(8): 519–27. https://doi.org/10.31089/1026-9428-2023-63-8-519-527 https://elibrary.ru/vfnyqa
  16. Mattagajasingh I., Kim C.S., Naqvi A., Yamamori T., Hoffman T.A., Jung S.B., et al. SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc. Natl. Acad Sci. USA. 2007; 104(37): 14855–60. https://doi.org/10.1073/pnas.0704329104
  17. Voelter-Mahlknecht S., Rossbach B., Schleithoff C., Dransfeld C.L., Letzel S., Mahlknecht U. Sirtuin1 single nucleotide polymorphism (A2191G) is a diagnostic marker for vibration-induced white finger disease. Clin. Epigenetics. 2012; 4(1): 18. https://doi.org/10.1186/1868-7083-4-18
  18. Спицын В.А., Кузьмина Л.П., Макаров С.В., Карапетян М.К., Попова М.В., Бычковская Л.С. и др. Особенности распространения полиморфизма генов ACE, CHIT1, PON1, SIRT1 и NOS3 у больных вибрационной болезнью. Медицинская генетика. 2015; 14(5): 23–7. https://elibrary.ru/unuhoz
  19. Ahmad A., Dempsey S.K., Daneva Z., Azam M., Li N., Li P.L., et al. Role of nitric oxide in the cardiovascular and renal systems. Int. J. Mol. Sci. 2018; 19(9): 2605. https://doi.org/10.3390/ijms19092605
  20. Oliveira-Paula G.H., Lacchini R., Tanus-Santos J.E. Endothelial nitric oxide synthase: From biochemistry and gene structure to clinical implications of NOS3 polymorphisms. Gene. 2016; 575(2 Pt. 3): 584–99. https://doi.org/10.1016/j.gene.2015.09.061
  21. Yao Y.S., Chang W.W., Jin Y.L., He L.P. An updated meta-analysis of endothelial nitric oxide synthase gene: three well-characterized polymorphisms with ischemic stroke. Gene. 2013; 528(2): 84–92. https://doi.org/10.1016/j.gene.2013.06.047
  22. Rai H., Parveen F., Kumar S., Kapoor A., Sinha N. Association of endothelial nitric oxide synthase gene polymorphisms with coronary artery disease: an updated meta-analysis and systematic review. PLoS One. 2014; 9(11): e113363. https://doi.org/10.1371/journal.pone.0113363
  23. Герасименко О.Н., Шпагина Л.А., Горбунова А.М., Шпагин И.С., Сергеева Я.С. Клинико-функциональная и молекулярная характеристика коморбидной патологии (вибрационная болезнь в сочетании с артериальной гипертензией). Атеросклероз. 2022; 18(1): 68–75. https://elibrary.ru/ydjovz
  24. Потеряева Е.Л., Смирнова Е.Л., Максимов В.Н., Колесник К.Н., Никифорова Н.Г., Песков С.А. Роль индивидуальных факторов риска в формировании особенностей течения основных форм профессиональных заболеваний в послеконтактном периоде. Сибирский научный медицинский журнал. 2017; 37(1): 41–7. https://elibrary.ru/xuwewx
  25. Шпагина Л.А., Герасименко О.Н., Дробышев В.А., Кузнецова Г.В. Полиморфизм генов-предикторов высокого риска сосудистых осложнений при вибрационной болезни в сочетании с артериальной гипертензией. Санитарный врач. 2017; (5–6): 60–3. https://elibrary.ru/zmdufj
  26. Blanquart S., Borowiec A.S., Delcourt P., Figeac M., Emerling C.A., Meseguer A.S., et al. Evolution of the human cold/menthol receptor, TRPM8. Mol. Phylogenet. Evol. 2019; 136: 104–18. https://doi.org/10.1016/j.ympev.2019.04.011
  27. Wang M., Gu Y., Meng S., Kang L., Yang J., Sun D., et al. Association between TRP channels and glutamatergic synapse gene polymorphisms and migraine and the comorbidities anxiety and depression in a Chinese population. Front. Genet. 2023; 14: 1158028. https://doi.org/10.3389/fgene.2023.1158028
  28. He J., Kelly T.N., Zhao Q., Li H., Huang J., Wang L., et al. Genome-wide association study identifies 8 novel loci associated with blood pressure responses to interventions in Han Chinese. Circ. Cardiovasc. Genet. 2013; 6(6): 598–607. https://doi.org/10.1161/CIRCGENETICS.113.000307
  29. Смирнова Е.Л., Потеряева Е.Л., Максимов В.Н., Несина И.А. Концепция индивидуального риска в формировании и особенностях течения вибрационной болезни. Медицина в Кузбассе. 2020; 19(1): 35–41. https://elibrary.ru/ddazub
  30. Abd El-Aziz T.A., Mohamed R.H. Influence of MTHFR C677T gene polymorphism in the development of cardiovascular disease in Egyptian patients with rheumatoid arthritis. Gene. 2017; 610: 127–32. https://doi.org/10.1016/j.gene.2017.02.015
  31. Luo Z., Lu Z., Muhammad I., Chen Y., Chen Q., Zhang J., et al. Associations of the MTHFR rs1801133 polymorphism with coronary artery disease and lipid levels: a systematic review and updated meta-analysis. Lipids Health Dis. 2018; 17(1): 191. https://doi.org/10.1186/s12944-018-0837-y
  32. Zhu J., Wang Z., Tao L., Han L., Huang Q., Fang X., et al. MTHFR gene polymorphism association with psoriatic arthritis risk and the efficacy and hepatotoxicity of methotrexate in psoriasis. Front. Med. (Lausanne). 2022; 9: 869912. https://doi.org/10.3389/fmed.2022.869912
  33. Liu Y., Xu C., Wang Y., Yang C., Pu G., Zhang L., et al. Association analysis of MTHFR (rs1801133 and rs1801131) and MTRR (rs1801394) gene polymorphisms towards the development of hypertension in the Bai population from Yunnan, China. Clin. Exp. Hypertens. 2023; 45(1): 2206066. https://doi.org/10.1080/10641963.2023.2206066
  34. Zhao L., Li T., Dang M., Li Y., Fan H., Hao Q., et al. Association of methylenetetrahydrofolate reductase (MTHFR) rs1801133 (677C>T) gene polymorphism with ischemic stroke risk in different populations: An updated meta-analysis. Front. Genet. 2023; 13: 1021423. https://doi.org/10.3389/fgene.2022.1021423
  35. Rigat B., Hubert C., Alhenc-Gelas F., Cambien F., Corvol P., Soubrier F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J. Clin. Invest. 1990; 86(4): 1343–6. https://doi.org/10.1172/JCI114844
  36. Patel D.D., Parchwani D.N., Dikshit N., Parchwani T. Analysis of the pattern, alliance and risk of rs1799752 (ACE I/D Polymorphism) with essential hypertension. Indian J. Clin. Biochem. 2022; 37(1): 18–28. https://doi.org/10.1007/s12291-020-00927-0
  37. Luo S., Shi C., Wang F., Wu Z. Association between the Angiotensin-Converting Enzyme (ACE) genetic polymorphism and diabetic retinopathy-a meta-analysis comprising 10,168 subjects. Int. J. Environ. Res. Public Health. 2016; 13(11): 1142. https://doi.org/10.3390/ijerph13111142
  38. Gouissem I., Midani F., Soualmia H., Bouchemi M., Ouali S., Kallele A., et al. Contribution of the ACE (rs1799752) and CYP11B2 (rs1799998) gene polymorphisms to atrial fibrillation in the Tunisian population. Biol. Res. Nurs. 2022; 24(1): 31–9. https://doi.org/10.1177/10998004211029376
  39. Ramanathan B., Nagarajan G., Velayutham K. Association of angiotensin‑converting enzyme gene polymorphism (rs1799752) with type 2 diabetes mellitus, hypertension, and chronic kidney disease and its clinical relevance: A preliminary study from South India. Chron. Diabetes Res. Pract. 2022; 1(2): 51–7. https://doi.org/10.4103/cdrp.cdrp_6_22
  40. Коляскина М.М., Анварул Н.А., Ликонцева А.С. Роль полиморфизмов генов Cyp1A1 и ЕРНХ1 в механизмах окислительного стресса у больных вибрационной болезнью. Медицина труда и промышленная экология. 2019; 59(9): 652. https://doi.org/10.31089/1026-9428-2019-59-9-652-653 https://elibrary.ru/qppogo
  41. Кононыхина Н.В., Бачинский О.Н., Бабкина В.И., Трубникова Е.В., Иванов В.П. Вовлеченность полиморфных вариантов гена EPHX1 в формирование хронической патологии легких профессионального и непрофессионального генеза в популяции жителей Курской области. Пульмонология. 2011; (5): 25–8. https://elibrary.ru/okmtvn
  42. Безрукавникова Л.М., Анохин Н.Н., Цидильковская Э.С. Ассоциация молекулярно-генетических маркеров и показателей оксидативного стресса у работающих в контакте с пылью асбеста. Медицина труда и промышленная экология. 2019; 59(9): 560. https://doi.org/10.31089/1026-9428-2019-59-9-560-561 https://elibrary.ru/znsclh
  43. Zhang M., Wu J.M., Zhang Q.S., Yan D.W., Ren L.J., Li W.P. The association of CYP1A1 genetic polymorphisms and additional gene-gene interaction with ischemic stroke in the eastern Han of China. Neurol. Sci. 2016; 37(10): 1679–84. https://doi.org/10.1007/s10072-016-2652-4.
  44. Peng D.D., Xie W., Yu Z.X. Impact of interaction between CYP1A1 genetic polymorphisms and smoking on coronary artery disease in the Han of China. Clin. Exp. Hypertens. 2017; 39(4): 339–43. https://doi.org/10.1080/10641963.2016.1259326
  45. Sun T., Gao Y., Tan W., Ma S., Shi Y., Yao J., et al. A six-nucleotide insertion-deletion polymorphism in the CASP8 promoter is associated with susceptibility to multiple cancers. Nat. Genet. 2007; 39(5): 605–13. https://doi.org/10.1038/ng2030
  46. Максимов В.Н., Пархоменко О.М., Ложкина Н.Г., Гуражева А.А., Максимова С.В., Иванова А.А. Некоторые молекулярно-генетические маркеры прогрессирующего атеросклероза у пациентов с ишемической болезнью сердца. Атеросклероз. 2022; 18(1): 6–13. https://elibrary.ru/fivrqv
  47. Gundapaneni K.K., Shyamala N., Galimudi R.K., Kupsal K., Gantala S.R., Padala C., et al. Polymorphic variants of Caspase genes (8 & 3) in the risk prediction of coronary artery disease. Gene. 2017; 627: 278–83. https://doi.org/10.1016/j.gene.2017.06.035
  48. Brown K.L., Seale K.B., El Khoury L.Y., Posthumus M., Ribbans W.J., Raleigh S.M., et al. Polymorphisms within the COL5A1 gene and regulators of the extracellular matrix modify the risk of Achilles tendon pathology in a British case-control study. J. Sports Sci. 2017; 35(15): 1475–83. https://doi.org/10.1080/02640414.2016.1221524
  49. Rahim M., Mannion S., Klug B., Hobbs H., van der Merwe W., Posthumus M., et al. Modulators of the extracellular matrix and risk of anterior cruciate ligament ruptures. J. Sci. Med. Sport. 2017; 20(2): 152–8. https://doi.org/10.1016/j.jsams.2016.07.003
  50. Смирнова Е.Л., Потеряева Е.Л., Иванова А.А., Максимов В.Н., Фунтикова И.С., Несина И.А. Ассоциация ID полиморфизма гена CASP8 с вибрационной болезнью. Медицина труда и промышленная экология. 2022; 62(12): 809–13. https://doi.org/10.31089/1026-9428-2022-62-12-809-813 https://elibrary.ru/srspyj
  51. Rey J., Cretel E., Jean R., Pastor M.J., Durand J.M. Serotonin reuptake inhibitors, Raynaud’s phenomenon and erythromelalgia. Rheumatology (Oxford). 2003; 42(4): 601–2. https://doi.org/10.1093/rheumatology/keg137
  52. Chen Q., Lang L., Xiao B., Lin H., Yang A., Li H., et al. HTR1B gene variants associate with the susceptibility of Raynauds’ phenomenon in workers exposed hand-arm vibration. Clin. Hemorheol. Microcirc. 2016; 63(4): 335–47. https://doi.org/10.3233/CH-152021
  53. Herrick A.L. Pathogenesis of Raynaud’s phenomenon. Rheumatology (Oxford). 2005; 44(5): 587–96. https://doi.org/10.1093/rheumatology/keh552
  54. Vos M.J., Hageman J., Carra S., Kampinga H.H. Structural and functional diversities between members of the human HSPB, HSPH, HSPA, and DNAJ chaperone families. Biochemistry. 2008; 47(27): 7001–11. https://doi.org/10.1021/bi800639z
  55. Srivastava K., Narang R., Bhatia J., Saluja D. Expression of heat shock protein 70 gene and its correlation with inflammatory markers in essential hypertension. PLoS One. 2016; 11(3): e0151060. https://doi.org/10.1371/journal.pone.0151060
  56. Hrira M.Y., Chkioua L., Slimani A., Chahed H., Mosbah H., Khaldoun H.B., et al. Hsp70-2 gene polymorphism: susceptibility implication in Tunisian patients with coronary artery disease. Diagn. Pathol. 2012; 7(1): 88. https://doi.org/10.1186/1746-1596-7-88
  57. Mehramiz M., Hassanian S.M., Mardan-Nik M., Pasdar A., Jamialahmadi K., Fiuji H., et al. The interaction between a HSP-70 gene variant with dietary calories in determining serum markers of inflammation and cardiovascular risk. Clin. Nutr. 2018; 37(6 Pt. A): 2122–6. https://doi.org/10.1016/j.clnu.2017.10.006
  58. Черняк Ю.И., Меринова А.П. Полиморфные локусы генов-кандидатов у пациентов с профессиональными болезнями. Гигиена и санитария. 2023; 102(7): 689–94. https://doi.org/10.47470/0016-9900-2023-102-7-689-694 https://elibrary.ru/glwiya
  59. Chernyak Y.I., Kudaeva I.V. Analysis of HSPA1B (+1267A>G) genetic polymorphism in patients with vibration disease in combination with metabolic syndrome. Bull. Exp. Biol. Med. 2021; 171(3): 375–8. https://doi.org/10.1007/s10517-021-05231-2
  60. Virtanen I.M., Karppinen J., Taimela S., Ott J., Barral S., Kaikkonen K., et al. Occupational and genetic risk factors associated with intervertebral disc disease. Spine (Phila Pa 1976). 2007; 32(10): 1129–34. https://doi.org/10.1097/01.brs.0000261473.03274.5c
  61. Solovieva S., Leino-Arjas P., Saarela J., Luoma K., Raininko R., Riihimäki H. Possible association of interleukin 1 gene locus polymorphisms with low back pain. Pain. 2004; 109(1-2): 8–19. https://doi.org/10.1016/j.pain.2003.10.020
  62. Noponen-Hietala N., Virtanen I., Karttunen R., Schwenke S., Jakkula E., Li H., et al. Genetic variations in IL6 associate with intervertebral disc disease characterized by sciatica. Pain. 2005; 114(1–2): 186–94. https://doi.org/10.1016/j.pain.2004.12.015
  63. Zayed N., Afif H., Chabane N., Mfuna-Endam L., Benderdour M., Martel-Pelletier J., et al. Inhibition of interleukin-1beta-induced matrix metalloproteinases 1 and 13 production in human osteoarthritic chondrocytes by prostaglandin D2. Arthritis Rheum. 2008; 58(11): 3530–40. https://doi.org/10.1002/art.23958
  64. Dinarello C.A. Immunological and inflammatory functions of the interleukin-1 family. Annu. Rev. Immunol. 2009; 27: 519–50. https://doi.org/10.1146/annurev.immunol.021908.132612
  65. Dinarello C.A. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood. 2011; 117(14): 3720–32. https://doi.org/10.1182/blood-2010-07-273417
  66. Gabay C., Lamacchia C., Palmer G. IL-1 pathways in inflammation and human diseases. Nat. Rev. Rheumatol. 2010; 6(4): 232–41. https://doi.org/10.1038/nrrheum.2010.4
  67. Le Maitre C.L., Hoyland J.A., Freemont A.J. Catabolic cytokine expression in degenerate and herniated human intervertebral discs: IL-1beta and TNFalpha expression profile. Arthritis Res. Ther. 2007; 9(4): R77. https://doi.org/10.1186/ar2275
  68. Le Maitre C.L., Freemont A.J., Hoyland J.A. The role of interleukin-1 in the pathogenesis of human intervertebral disc degeneration. Arthritis Res. Ther. 2005; 7(4): R732–45. https://doi.org/10.1186/ar1732
  69. Burke J.G., Watson R.W., McCormack D., Dowling F.E., Walsh M.G., Fitzpatrick J.M. Intervertebral discs which cause low back pain secrete high levels of proinflammatory mediators. J. Bone Joint Surg. Br. 2002; 84(2): 196–201. https://doi.org/10.1302/0301-620x.84b2.12511
  70. Risbud M.V., Shapiro I.M. Role of cytokines in intervertebral disc degeneration: pain and disc content. Nat. Rev. Rheumatol. 2014; 10(1): 44–56. https://doi.org/10.1038/nrrheum.2013.160
  71. Ye W., Ma R.F., Su P.Q., Huang D.S., Liu S.L., Chen W.J., et al. Association of single nucleotide polymorphisms of IL-1b with lumbar disc disease. Yi Chuan. 2007; 29(8): 923–8. (in Chinese)
  72. Kim S.H., Mok J.W., Kim H.S., Joo C.K. Association of –31T>C and –511 C>T polymorphisms in the interleukin 1 beta (IL1B) promoter in Korean keratoconus patients. Mol. Vis. 2008; 14: 2109–16.
  73. Choi J., Choi S.A., Kim S.Y., Kim H., Lim B.C., Hwang H., et al. Association analysis of interleukin-1β, interleukin-6, and HMGB1 variants with postictal serum cytokine levels in children with febrile seizure and generalized epilepsy with febrile seizure plus. J. Clin. Neurol. 2019; 15(4): 555–63. https://doi.org/10.3988/jcn.2019.15.4.555
  74. Rong H., He X., Wang L., Bai M., Jin T., Wang Y., et al. Association between IL1B polymorphisms and the risk of rheumatoid arthritis. Int. Immunopharmacol. 2020; 83: 106401. https://doi.org/10.1016/j.intimp.2020.106401
  75. Wang Z., Song X., Fang Q., Xia W., Luo A. Polymorphism of IL-1β rs16944(T/C) associated with serum levels of IL-1β and subsequent stimulation of extracellular matrix degradation affects intervertebral disk degeneration susceptibility. Ther. Clin. Risk Manag. 2021; 17: 453–61. https://doi.org/10.2147/TCRM.S308653
  76. Kishimoto T. Interleukin-6: from basic science to medicine – 40 years in immunology. Annu. Rev. Immunol. 2005; 23: 1–21. https://doi.org/10.1146/annurev.immunol.23.021704.115806
  77. Fishman D., Faulds G., Jeffery R., Mohamed-Ali V., Yudkin J.S., Humphries S., et al. The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J. Clin. Invest. 1998; 102(7): 1369–76. https://doi.org/10.1172/JCI2629
  78. Guan Y., Wang S., Wang J., Meng D., Wu H., Wei Q., et al. Gene polymorphisms and expression levels of interleukin-6 and interleukin-10 in lumbar disc disease: a meta-analysis and immunohistochemical study. J. Orthop. Surg. Res. 2020; 15(1): 54. https://doi.org/10.1186/s13018-020-01588-8
  79. Amr K., El-Awady R., Raslan H. Assessment of the –174G/C (rs1800795) and –572G/C (rs1800796) interleukin 6 gene polymorphisms in Egyptian patients with rheumatoid arthritis. Open Access Maced. J. Med. Sci. 2016; 4(4): 574–7. https://doi.org/10.3889/oamjms.2016.110
  80. Dar S.A., Haque S., Mandal R.K., Singh T., Wahid M., Jawed A., et al. Interleukin-6-174G > C (rs1800795) polymorphism distribution and its association with rheumatoid arthritis: A case-control study and meta-analysis. Autoimmunity. 2017; 50(3): 158–69. https://doi.org/10.1080/08916934.2016.1261833
  81. Sun G., Ba C.L., Gao R., Liu W., Ji Q. Association of IL-6, IL-8, MMP-13 gene polymorphisms with knee osteoarthritis susceptibility in the Chinese Han population. Biosci. Rep. 2019; 39(2): BSR20181346. https://doi.org/10.1042/BSR20181346
  82. Kroeger K.M., Carville K.S., Abraham L.J. The -308 tumor necrosis factor-alpha promoter polymorphism effects transcription. Mol. Immunol. 1997; 34(5): 391–9. https://doi.org/10.1016/s0161-5890(97)00052-7
  83. Lee S., Yoo J.I., Kang Y.J. Integrative analyses of genes related to femoral head osteonecrosis: an umbrella review of systematic reviews and meta-analyses of observational studies. J. Orthop. Surg. Res. 2022; 17(1): 182. https://doi.org/10.1186/s13018-022-03079-4
  84. Malysheva I.E., Topchieva L.V., Balan O.V., Marusenko I.M., Barysheva O.Y., Kurbatova I.V. Analysis of the association of TNF –238G>A gene polymorphism with the risk of rheumatoid arthritis development in Russian population in the Republic of Karelia. Bull. Exp. Biol. Med. 2018; 165(5): 674–7. https://doi.org/10.1007/s10517-018-4239-y
  85. Loures M.A.R., Alves H.V., de Moraes A.G., Santos T.D.S., Lara F.F., Neves J.S.F., et al. Association of TNF, IL12, and IL23 gene polymorphisms and psoriatic arthritis: meta-analysis. Expert Rev. Clin. Immunol. 2019; 15(3): 303–13. https://doi.org/10.1080/1744666X.2019.1564039
  86. Krajnak K., Dong R.G., Flavahan S., Welcome D., Flavahan N.A. Acute vibration increases alpha2C-adrenergic smooth muscle constriction and alters thermosensitivity of cutaneous arteries. J. Appl. Physiol. (1985). 2006; 100(4): 1230–7. https://doi.org/10.1152/japplphysiol.00761.2005
  87. Welcome D.E., Krajnak K., Kashon M.L., Dong R.G. An investigation on the biodynamic foundation of a rat tail vibration model. Proc. Inst. Mech. Eng. H. 2008; 222(7): 1127–41. https://doi.org/10.1243/09544119JEIM419
  88. Krajnak K., Miller G.R., Waugh S., Johnson C., Li S., Kashon M.L. Characterization of frequency-dependent responses of the vascular system to repetitive vibration. J. Occup. Environ. Med. 2010; 52(6): 584–94. https://doi.org/10.1097/JOM.0b013e3181e12b1f
  89. Wu J.Z., An K.N., Cutlip R.G., Krajnak K., Welcome D., Dong R.G. Analysis of musculoskeletal loading in an index finger during tapping. J. Biomech. 2008; 41(3): 668–76. https://doi.org/10.1016/j.jbiomech.2007.09.025
  90. Xu X.S., Riley D.A., Persson M., Welcome D.E., Krajnak K., Wu J.Z., et al. Evaluation of anti-vibration effectiveness of glove materials using an animal model. Biomed. Mater. Eng. 2011; 21(4): 193–211. https://doi.org/10.3233/BME-2011-0669
  91. Krajnak K., Miller G.R., Waugh S. Contact area affects frequency-dependent responses to vibration in the peripheral vascular and sensorineural systems. J. Toxicol. Environ. Health A. 2018; 81(1–3): 6–19. https://doi.org/10.1080/15287394.2017.1401022
  92. Afonso V., Champy R., Mitrovic D., Collin P., Lomri A. Reactive oxygen species and superoxide dismutases: role in joint diseases. Joint Bone Spine. 2007; 74(4): 324–9. https://doi.org/10.1016/j.jbspin.2007.02.002
  93. Xie Y.G., Mu H.J., Li Z., Ma J.H., Wang Y.L. Supression of chronic central pain by superoxide dismutase in rats with spinal cord injury: Inhibition of the NMDA receptor implicated. Exp. Ther. Med. 2014; 8(4): 1137–41. https://doi.org/10.3892/etm.2014.1878
  94. Wan X.S., Devalaraja M.N., St Clair D.K. Molecular structure and organization of the human manganese superoxide dismutase gene. DNA Cell Biol. 1994; 13(11): 1127–36. https://doi.org/10.1089/dna.1994.13.1127
  95. Hernandez-Saavedra D., McCord J.M. Association of a new intronic polymorphism of the SOD2 gene (G1677T) with cancer. Cell Biochem. Funct. 2009; 27(4): 223–7. https://doi.org/10.1002/cbf.1560
  96. Işikli A., Kubat-Üzüm A., Satman İ., Matur Z., Öge A.E., Küçükali C.İ., et al. A SOD2 polymorphism is associated with abnormal quantitative sensory testing in type 2 diabetic patients. Noro Psikiyatr. Ars. 2018; 55(3): 276–9. https://doi.org/10.29399/npa.23027
  97. Sutton A., Khoury H., Prip-Buus C., Cepanec C., Pessayre D., Degoul F. The Ala16Val genetic dimorphism modulates the import of human manganese superoxide dismutase into rat liver mitochondria. Pharmacogenetics. 2003; 13(3): 145–57. https://doi.org/10.1097/01.fpc.0000054067.64000.8f
  98. Fujimoto H., Taguchi J., Imai Y., Ayabe S., Hashimoto H., Kobayashi H., et al. Manganese superoxide dismutase polymorphism affects the oxidized low-density lipoprotein-induced apoptosis of macrophages and coronary artery disease. Eur. Heart J. 2008; 29(10): 1267–74. https://doi.org/10.1093/eurheartj/ehm500
  99. Valenti L., Conte D., Piperno A., Dongiovanni P., Fracanzani A.L., Fraquelli M., et al. The mitochondrial superoxide dismutase A16V polymorphism in the cardiomyopathy associated with hereditary haemochromatosis. J. Med. Genet. 2004; 41(12): 946–50. https://doi.org/10.1136/jmg.2004.019588
  100. Santl Letonja M., Letonja M., Ikolajević-Starcević J.N., Petrovic D. Association of manganese superoxide dismutase and glutathione S-transferases genotypes with carotid atherosclerosis in patients with diabetes mellitus type 2. Int. Angiol. 2012; 31(1): 33–41.
  101. Souiden Y., Mallouli H., Meskhi S., Chaabouni Y., Rebai A., Chéour F., et al. MnSOD and GPx1 polymorphism relationship with coronary heart disease risk and severity. Biol. Res. 2016; 49: 22. https://doi.org/10.1186/s40659-016-0083-6
  102. Xu M., Xu M., Han L., Yuan C., Mei Y., Zhang H., et al. Role for functional SOD2 polymorphism in pulmonary arterial hypertension in a Chinese population. Int. J. Environ. Res. Public Health. 2017; 14(3): 266. https://doi.org/10.3390/ijerph14030266
  103. Synowiec E., Wigner P., Cichon N., Watala C., Czarny P., Saluk-Bijak J., et al. Single-nucleotide polymorphisms in oxidative stress-related genes and the risk of a stroke in a Polish population – a preliminary study. Brain Sci. 2021; 11(3): 391. https://doi.org/10.3390/brainsci11030391
  104. Потеряева Е.Л., Смирнова Е.Л., Никифорова Н.Г. Прогнозирование формирования и течения вибрационной болезни на основе изучения геннометаболических маркеров. Медицина труда и промышленная экология. 2015; (6): 19–22. https://elibrary.ru/ubemit
  105. Govindaraju S.R., Curry B.D., Bain J.L., Riley D.A. Comparison of continuous and intermittent vibration effects on rat-tail artery and nerve. Muscle Nerve. 2006; 34(2): 197–204. https://doi.org/10.1002/mus.20578
  106. Krajnak K., Riley D.A., Wu J., McDowell T., Welcome D.E., Xu X.S., et al. Frequency-dependent effects of vibration on physiological systems: experiments with animals and other human surrogates. Ind. Health. 2012; 50(5): 343–53. https://doi.org/10.2486/indhealth.ms1378
  107. Krajnak K., Raju S.G., Miller G.R., Johnson C., Waugh S., Kashon M.L., et al. Long-term daily vibration exposure alters current perception threshold (CPT) sensitivity and myelinated axons in a rat-tail model of vibration-induced injury. J. Toxicol. Environ. Health A. 2016; 79(3): 101–11. https://doi.org/10.1080/15287394.2015.1104272
  108. Krajnak K., Waugh S. Systemic Effects of segmental vibration in an animal model of hand-arm vibration syndrome. J. Occup. Environ. Med. 2018; 60(10): 886–95. https://doi.org/10.1097/JOM.0000000000001396
  109. Cauwe B., Van den Steen P.E., Opdenakker G. The biochemical, biological, and pathological kaleidoscope of cell surface substrates processed by matrix metalloproteinases. Crit. Rev. Biochem. Mol. Biol. 2007; 42(3): 113–85. https://doi.org/10.1080/10409230701340019
  110. Zeng G.Q., Chen A.B., Li W., Song J.H., Gao C.Y. High MMP-1, MMP-2, and MMP-9 protein levels in osteoarthritis. Genet. Mol. Res. 2015; 14(4): 14811–22. https://doi.org/10.4238/2015.November.18.46
  111. Zhang C., Chen L., Gu Y. Polymorphisms of MMP-1 and MMP-3 and susceptibility to rheumatoid arthritis. A meta-analysis. Z. Rheumatol. 2015; 74(3): 258–62. https://doi.org/10.1007/s00393-014-1537-2
  112. Milaras C., Lepetsos P., Dafou D., Potoupnis M., Tsiridis E. Association of matrix metalloproteinase (MMP) gene polymorphisms with knee osteoarthritis: a review of the literature. Cureus. 2021; 13(10): e18607. https://doi.org/10.7759/cureus.18607
  113. Luo Y., Wang J., Pei J., Rong Y., Liu W., Tang P., et al. Interactions between the MMP-3 gene rs591058 polymorphism and occupational risk factors contribute to the increased risk for lumbar disk herniation: A case-control study. J. Clin. Lab. Anal. 2020; 34(7): e23273. https://doi.org/10.1002/jcla.23273
  114. Lesauskaite V., Sinkūnaite G., Benetis R., Grabauskas V., Vaskelyte J., Smalinskiene A., et al. Matrix metalloproteinase-3 gene polymorphism and dilatative pathology of ascending thoracic aorta. Medicina (Kaunas). 2008; 44(5): 386–91.
  115. Chakraborti S., Mandal M., Das S., Mandal A., Chakraborti T. Regulation of matrix metalloproteinases: an overview. Mol. Cell Biochem. 2003; 253(1–2): 269–85. https://doi.org/10.1023/a:1026028303196
  116. Malemud C.J. Matrix metalloproteinases (MMPs) in health and disease: an overview. Front. Biosci. 2006; 11: 1696–701. https://doi.org/10.2741/1915
  117. Eser B., Eser O., Yuksel Y., Aksit H., Karavelioglu E., Tosun M., et al. Effects of MMP-1 and MMP-3 gene polymorphisms on gene expression and protein level in lumbar disc herniation. Genet. Mol. Res. 2016; 15(3). https://doi.org/10.4238/gmr.15038669
  118. McCann M.R., Patel P., Pest M.A., Ratneswaran A., Lalli G., Beaucage K.L., et al. Repeated exposure to high-frequency low-amplitude vibration induces degeneration of murine intervertebral discs and knee joints. Arthritis Rheumatol. 2015; 67(8): 2164–75. https://doi.org/10.1002/art.39154
  119. McCann M.R., Veras M.A., Yeung C., Lalli G., Patel P., Leitch K.M., et al. Whole-body vibration of mice induces progressive degeneration of intervertebral discs associated with increased expression of Il-1β and multiple matrix degrading enzymes. Osteoarthritis Cartilage. 2017; 25(5): 779–89. https://doi.org/10.1016/j.joca.2017.01.004

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 37884 от 02.10.2009.