Воздействие наночастиц металлов на почвенный биоценоз (обзор литературы)
- Авторы: Соседова Л.М.1,2, Новиков М.А.1, Титов Е.А.1
-
Учреждения:
- ФГБНУ «Восточно-Сибирский институт медико-экологических исследований»
- ФГБОУ ВО «Ангарский государственный технический университет»
- Выпуск: Том 99, № 10 (2020)
- Страницы: 1061-1066
- Раздел: ГИГИЕНА ОКРУЖАЮЩЕЙ СРЕДЫ
- Статья опубликована: 01.12.2020
- URL: https://ruspoj.com/0016-9900/article/view/638490
- DOI: https://doi.org/10.47470/0016-9900-2020-99-10-1061-1066
- ID: 638490
Цитировать
Полный текст
Аннотация
Ключевые слова
Об авторах
Лариса Михайловна Соседова
ФГБНУ «Восточно-Сибирский институт медико-экологических исследований»; ФГБОУ ВО «Ангарский государственный технический университет»
Автор, ответственный за переписку.
Email: sosedlar@mail.ru
ORCID iD: 0000-0003-1052-4601
Доктор мед. наук, профессор, зав. лаб. биомоделирования и трансляционной медицины ФГБНУ ВСИМЭИ, 665827, Ангарск; профессор кафедры экологии и безопасности деятельности человека ФГБОУ ВО АнГТУ, 665835, Ангарск.
e-mail: sosedlar@mail.ru
РоссияМ. А. Новиков
ФГБНУ «Восточно-Сибирский институт медико-экологических исследований»
Email: noemail@neicon.ru
ORCID iD: 0000-0002-6100-6292
Россия
Е. А. Титов
ФГБНУ «Восточно-Сибирский институт медико-экологических исследований»
Email: noemail@neicon.ru
ORCID iD: 0000-0002-0665-8060
Россия
Список литературы
- Corsi I., Winther-Nielsen M., Sethi R., Punta C., Della T. C., Libralato G., et al. Ecofriendly nanotechnologies and nanomaterials for environmental applications: Key issue and consensus recommendations for sustainable and ecosafe nanoremediation. Ecotoxicol. Environ. Saf. 2018; 154: 237-44. https://doi.org/10.1016/j.ecoenv.2018.02.037
- George S., Xia T., Rallo R., Zhao Y., Ji Z., Lin S., et al. Use of a high-throughput screening approach coupled with in vivo zebrafish embryo screening to develop hazard ranking for engineered nanomaterials. ACS Nano. 2011; 5(3): 1805-17. https://doi.org/10.1021/nn102734s
- Гладкова М.М., Терехова В.А. Инженерные наноматериалы в почве: источники поступления и пути миграции. Вестник Московского университета. Серия 17: Почвоведение. 2013; (3): 34-9
- Omouria Z., Hawarib J., Fourniera M., Robidouxa P.Y. Bioavailability and chronic toxicity of bismuth citrate to earthworm Eisenia andrei exposed to natural sandy soil. Ecotoxicol. Environ. Saf. 2018; 147: 1-8. https://doi.org/10.1016/j.ecoenv.2017.08.018
- El-Temsah Y.S., Joner E.J. Ecotoxicological effects on earthworms of fresh and aged nano-sized zero-valent iron (nZVI) in soil. Chemosphere. 2012; 89(1): 76-82.
- Brami C., Glover A.R., Butt K.R., Lowe C.N. Effects of silver nanoparticles on survival, biomass change and avoidance behaviour of the endogeic earthworm Allolobophora chlorotica. Ecotoxicol. Environ. Saf. 2017; 141: 64-9. https://doi.org/10.1016/j.ecoenv.2017.03.015
- Gautama A., Raya A., Mukherjeea S., Dasa S., Palb K., Dasc S., et al. Immunotoxicity of copper nanoparticle and copper sulfate in a common Indian earthworm. Ecotoxicol. Environ. Saf. 2018; 148: 620-31. https://doi.org/10.1016/j.ecoenv.2017.11.008
- Gomes S.I.L., Murphy M., Nielsen M.T., Kristiansen S.M., Amorim M.J.B., Scott-Fordsmand J.J. Cu-nanoparticles ecotoxicity - explored and explained? Chemosphere. 2015; 139: 240-5. https://doi.org/10.1016/j.chemosphere.2015.06.045
- Concha-Guerrero S.I., Souza Brito E.M., Piñón-Castillo H.A., Tarango-Rivero S.H., Caretta C.A., Luna-Velasco A., et al. Effect of CuO nanoparticles over isolated Bacterial strains from agricultural soil. J. Nanomaterials. 2014; 2014: 148743. https://doi.org/10.1155/2014/148743
- Joskoa I., Oleszczukb P., Futa B. The effect of inorganic nanoparticles (ZnO, Cr2O3, CuO and Ni) and their bulk counterparts on enzyme activities in different soils. Geoderma. 2014; 232-234: 528-37. https://doi.org/10.1016/j.geoderma.2014.06.012
- Kim S., Sin H., Lee S., Lee I. Influence of metal oxide particles on soil enzyme activity and bioaccumulation of two plants. J. Microbiol. Biotechnol. 2013; 23(9): 1279-86. https://doi.org/10.4014/jmb.1304.04084
- Тимошенко А.Н., Колесников С.И., Казеев К.Ш., Акименко Ю.В. Изменение биологических показателей серопесков после загрязнения наночастицами Cu, Zn и Ni. Известия высших учебных заведений. Северо-Кавказский регион. Серия: Естественные науки. 2019; (2): 106-11. https://doi.org/10.23683/0321-3005-2019-2-106-111
- Janvier C., Villeneuve F., Alabouvette C., Edel-Hermann V., Mateille T., Steinberg C. Soil health through soil disease suppression: which strategy from descriptors to indicators? Soil Biol. Biochem. 2007; 39(1): 1-23. https://doi.org/10.1016/j.soilbio.2006.07.001
- Kolesnikov S.I., Timoshenko A.N., Kazeev K.Sh., Akimenko Yu.V., Myasnikova M.A. Ecotoxicity of copper, nickel, and zinc nanoparticles assessment on the basis of biological indicators of chernozems. Eurasian Soil Sc. 2019; 52(8): 982-7. https://doi.org/10.1134/S106422931908009X
- Яушева Е.В., Сизова Е.А., Гавриш И.А., Лебедев С.В., Каюмов Ф.Г. Действие наночастиц AL2O3 на почвенный микробиоценоз, состояние антиоксидантной системы и микрофлору кишечника красного калифорнийского червя (Eisenia foetida). Сельскохозяйственная биология. 2017; 52(1): 191-9. https://doi.org/10.15389/agrobiology.2017.1.191rus
- Цицуашвили В.С., Минкина Т.М., Невидомская Д.Г., Раджпут В.Д., Манджиева С.С., Сушкова С.Н. и соавт. Воздействие наночастиц меди на растения и почвенные микроорганизмы (обзор литературы). Вестник аграрной науки Дона. 2017; (3): 93-100.
- Manesh R.R., Grassi G., Bergami E., Marques-Santos L.F., Faleri C., Liberatori G., et al. Co-exposure to titanium dioxide nanoparticles does not affect cadmium toxicity in radish seeds (Raphanus sativus). Ecotoxicol. Environ. Saf. 2018; 148: 359-66. https://doi.org/10.1016/j.ecoenv.2017.10.051
- Ye X., Li H., Wang Q., Chai R., Ma C., Gaoa H., et al. Influence of aspartic acid and lysine on the uptake of gold nanoparticles in rice. Ecotoxicol. Environ. Saf. 2018; 148: 418-25. https://doi.org/10.1016/j.ecoenv.2017.10.056
- Manquián-Cerda K., Cruces E., Rubio M.A., Reyes C., Arancibia-Miranda N. Preparation of nanoscale iron (oxide, oxyhydroxides and zero-valent) particles derived from blueberries: Reactivity, characterization and removal mechanism of arsenate. Ecotoxicol. Environmen. Saf. 2017; 145: 69-77. https://doi.org/10.1016/j.ecoenv.2017.07.004
- Harshiny M., Matheswaran M., Arthanareeswaran G., Kumaran S., Rajasree S. Enhancement of antibacterial properties of silver nanoparticles-ceftriaxone conjugate through Mukia maderaspatana leaf extract mediated synthesis. Ecotoxicol. Environ. Saf. 2015; 121: 135-41. https://doi.org/10.1016/j.ecoenv.2015.04.041
- Sathiya Priya R., Geetha D., Ramesh P.S. Antioxidant activity of chemically synthesized AgNPs and biosynthesized Pongamia pinnata leaf extract mediated AgNPs - A comparative study. Ecotoxicol. Environ. Saf. 2016; 134(Pt. 2): 308-18. https://doi.org/10.1016/j.ecoenv.2015.07.037
- Kokila T., Ramesh P.S., Geetha D. Biosynthesis of AgNPs using Carica Papaya peel extract and evaluation of its antioxidant and antimicrobial activitie. Ecotoxicol. Environ. Saf. 2016; 134(Pt. 2): 467-73. https://doi.org/10.1016/j.ecoenv.2016.03.021
- Bondarenko O., Juganson K., Ivask A., Kasemets K., Mortimer M., Kahru A. Toxicity of Ag, CuO and ZnO nanopar-ticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch. Toxicol. 2013; 87(7): 1181-200. https://doi.org/10.1007/s00204-013-1079-4
- Padmavathy N., Vijayaraghavan R. Enhanced bioactivity of ZnO nanoparticles - an antimicrobial study. Sci. Technol. Adv. Mater. 2008; 9(3): 035004. https://doi.org/10.1088/1468-6996/9/3/035004
- Баутин В.М., ред. Нанотехнологии и наноматериалы в сельском хозяйстве. М.; 2008.
- Федоренко В.Ф., Ерохин М.Н., Балабанов В.И., Буклагин Д.С., Голубев И.Г., Ищенко С.А. Нанотехнологии и наноматериалы в агропромышленном комплексе. М.; 2011.
- Barabanov P.V., Gerasimov A.V., Blinov A.V., Kravtsov A.A., Kravtsov V.A. Influence of nanosilver on the efficiency of Pisum sativum crops germination. Ecotoxicol. Environ. Saf. 2018; 147: 715-9. https://doi.org/10.1016/j.ecoenv.2017.09.024
- Amooaghaie R., Reza Saeri M., Azizi M. Synthesis, characterization and biocompatibility of silver nanoparticles synthesized from Nigella sativa leaf extract in comparison with chemical silver nanoparticles. Ecotoxicol. Environ. Safety. 2015; 120: 400-8. https://doi.org/10.1016/j.ecoenv.2015.06.025
- Cvjetko P., Milošić A., Domijan A.M., Vinković Vrček I., Tolić S., Štefanić P.P., et al. Toxicity of silver ions and differently coated silver nanoparticles in Allium cepa roots. Ecotoxicol. Environ. Saf. 2017; 137: 18-28. https://doi.org/10.1016/j.ecoenv.2016.11.009
- Foltête A.S., Masfaraud J.F., Bigorgne E., Nahmani J., Chaurand P., Botta C., et al. Environmental impact of sunscreen nano materials: Ecotoxicity and genotoxicity of altered TiO2 nanocomposites on Vicia faba. Environ. Pollut. 2011; 159(10): 2515-22. https://doi.org/10.1016/j.envpol.2011.06.020
- Gladkova M.M., Terekhova V.A. Phytotoxicity of nano-TiO2 and effect of humus preparation. In: SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting. Berlin; 2012: 269-70. Available at: http://berlin.setac.eu/embed/Berlin/Abstractbook2_Part1.pdf
- Wang Z., Zhao J., Liu X., Feng W., White J.C., Xing B., et al. Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ. Sci. Technol. 2012; 46(8): 4434-41. https://doi.org/10.1021/es204212z
- Kim S., Lee S., Lee I. Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in Cucumis sativus. Water Air. Soil Pollut. 2012; 223: 2799-806. https://doi.org/10.1007/s11270-011-1067-3
- Wu S.G., Huang L., Head J., Chen D.R., Kong I.C., Tang Y.J. Phytotoxicity of metal oxide nanoparticles is related to both dissolved metals ions and adsorption of particles on seed surfaces. J. Petrol. Environ. Biotechnol. 2012; 3(4): 126. https://doi.org/10.4172/2157-7463.1000126
- Короткова А.М., Кван О.В., Быкова Л.А., Кудрявцева О.С., Виденеева Т.С., Вишняков А.И. Сравнительный анализ морфо-физиологических особенностей проростков Triticum vulgare после воздействия наночастиц металлов. Вестник Воронежского государственного университета инженерных технологий. 2018; 80(3): 190-5. https://doi.org/10.20914/2310-1202-2018-3-190-195
- Manceau A., Nagy K.L., Marcus M.A., Lanson M., Geoffroy N., Jacquet T., et al. Formation of metallic copper nanoparticles at the soil-root interface. Environ. Sci. Technol. 2008; 42(5): 1766-72. https://doi.org/10.1021/es072017o
- Parada J., Rubilar O., Fernández-Baldo M.A., Bertolino F.A., Durán N., Seabra A.B. The nanotechnology among US: are metal and metal oxides nanoparticles a nano or mega risk for soil microbial communities? Crit. Rev. Biotechnol. 2019; 39(2): 157-72. https://doi.org/10.1080/07388551.2018.1523865
- Shrestha B., Acosta-Martinez V., Cox S.B., Green M.J., Li S., Cañas-Carrell J.E. An evaluation of the impact of multi-walled carbon nanotubes on soil microbial community structure and functioning. J. Hazard. Mater. 2013; 261: 188-97. https://doi.org/10.1016/j.jhazmat.2013.07.031
- Bondarenko O., Juganson K., Ivask A., Kasemets K., Mortimer M., Kahru A. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch. Toxicol. 2013; 87(7): 1181-200. https://doi.org/10.1007/s00204-013-1079-4
- Gajjar P., Pettee B., Britt D.W., Huang W., Johnson W.P., Anderson A.J. Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440. J. Biol. Eng. 2009; 3: 9. https://doi.org/10.1186/1754-1611-3-9
- Dimkpa C., Mclean J., Anderson A. CuO and ZnO nanoparticles differently affect the secretion of fluorescent siderophores in the beneficial root colonizer, Pseudomonas chlororaphis O6. Nanotoxicology. 2012; 6(6): 635-42. https://doi.org/10.3109/17435390.2011.598246
- Harris Z., Ahmad I. Impact of metal oxide nanoparticles on beneficial soil microorganisms and their secondary metabolites. Int. J. Life Sci. Scienti. Res. 2017; 3(3): 1020-30. https://doi.org/10.21276/ijlssr.2017.3.3.10
- Ge Y., Schimel J.P., Holden P.A. Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ. Sci. Technol. 2011; 45(4): 1659-64. https://doi.org/10.1021/es103040t
- Sirelkhatim А., Shahrom M., Azman S., Noor H.M.K., Chuo A.L., Siti K.M.B., et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Micro. Nano. Lett. 2015; 7(3): 219-42. https://doi.org/10.1007/s40820-015-0040-x
- Ge Y., Priester J.H., Van De Werfhorst L.C., Schimel J.P., Holden P.A. Potential mechanisms and environmental controls of TiO2 nanoparticle effects on soil bacterial communities. Environ. Sci. Technol. 2013; 47(24): 14411-7. https://doi.org/10.1021/es403385c
- Ben-Moshe T., Frenk S., Dror I., Minz D., Berkowitz B. Effects of metal oxide nanoparticles on soil properties. Chemosphere. 2013; 90(2): 640-6. https://doi.org/10.1016/j.chemosphere.2012.09.018
- Frenk S., Ben-Moshe T., Dror I., Berkowitz B., Minz D. Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types. PLoS One. 2013; 8(12): e84441. https://doi.org/10.1371/journal.pone.0084441
- Du W.C., Sun Y.Y., Ji R., Zhu J.G., Wu J.C., Guo H.Y. TiO2 and ZnO Nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J. Environ. Monit. 2011; 13(4): 822-8. https://doi.org/10.1039/c0em00611d
- Simonin M., Richaume A. Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: a review. Environ. Sci. Pollut. Res. Int. 2015; 22(18): 13710-23. https://doi.org/10.1007/s11356-015-4171-x
Дополнительные файлы
