Impact of metal nanoparticles on the ecology of soil biocenosis (literature review)
- Authors: Sosedova L.M.1,2, Novikov M.A.1, Titov E.A.1
-
Affiliations:
- East-Siberian Institute of Medical and Ecological Research
- Angarsk State Technical University
- Issue: Vol 99, No 10 (2020)
- Pages: 1061-1066
- Section: ENVIRONMENTAL HYGIENE
- Published: 01.12.2020
- URL: https://ruspoj.com/0016-9900/article/view/638490
- DOI: https://doi.org/10.47470/0016-9900-2020-99-10-1061-1066
- ID: 638490
Cite item
Full Text
Abstract
Keywords
About the authors
Larisa M. Sosedova
East-Siberian Institute of Medical and Ecological Research; Angarsk State Technical University
Author for correspondence.
Email: sosedlar@mail.ru
ORCID iD: 0000-0003-1052-4601
MD, Ph.D., DSci., Professor, Head of Laboratory of biomodeling and translational medicine of the East-Siberian Institute of Medical and Ecological Research, Angarsk, 665827, Russian Federation; Professor of Department of Ecology and Human Activities Safety, Angarsk State Technical University, Angarsk, 665835, Russian Federation.
e-mail: sosedlar@mail.ru
Russian FederationMichail A. Novikov
East-Siberian Institute of Medical and Ecological Research
Email: noemail@neicon.ru
ORCID iD: 0000-0002-6100-6292
Russian Federation
Evgeniy A. Titov
East-Siberian Institute of Medical and Ecological Research
Email: noemail@neicon.ru
ORCID iD: 0000-0002-0665-8060
Russian Federation
References
- Corsi I., Winther-Nielsen M., Sethi R., Punta C., Della T. C., Libralato G., et al. Ecofriendly nanotechnologies and nanomaterials for environmental applications: Key issue and consensus recommendations for sustainable and ecosafe nanoremediation. Ecotoxicol. Environ. Saf. 2018; 154: 237–44. https://doi.org/10.1016/j.ecoenv.2018.02.037
- George S., Xia T., Rallo R., Zhao Y., Ji Z., Lin S., et al. Use of a high-throughput screening approach coupled with in vivo zebrafish embryo screening to develop hazard ranking for engineered nanomaterials. ACS Nano. 2011; 5(3): 1805–17. https://doi.org/10.1021/nn102734s
- Gladkova M.M., Terekhova V.A. Engineered nanomaterials in soil: source of entry and migration pathways. Vestnik Moskovskogo universiteta. Seriya 17: Pochvovedenie. 2013; (3): 34–9. (in Russian)
- Omouria Z., Hawarib J., Fourniera M., Robidouxa P.Y. Bioavailability and chronic toxicity of bismuth citrate to earthworm Eisenia andrei exposed to natural sandy soil. Ecotoxicol. Environ. Saf. 2018; 147: 1–8. https://doi.org/10.1016/j.ecoenv.2017.08.018
- El-Temsah Y.S., Joner E.J. Ecotoxicological effects on earthworms of fresh and aged nano-sized zero-valent iron (nZVI) in soil. Chemosphere. 2012; 89(1): 76–82.
- Brami C., Glover A.R., Butt K.R., Lowe C.N. Effects of silver nanoparticles on survival, biomass change and avoidance behaviour of the endogeic earthworm Allolobophora chlorotica. Ecotoxicol. Environ. Saf. 2017; 141: 64–9. https://doi.org/10.1016/j.ecoenv.2017.03.015
- Gautama A., Raya A., Mukherjeea S., Dasa S., Palb K., Dasc S., et al. Immunotoxicity of copper nanoparticle and copper sulfate in a common Indian earthworm. Ecotoxicol. Environ. Saf. 2018; 148: 620–31. https://doi.org/10.1016/j.ecoenv.2017.11.008
- Gomes S.I.L., Murphy M., Nielsen M.T., Kristiansen S.M., Amorim M.J.B., Scott-Fordsmand J.J. Cu-nanoparticles ecotoxicity – explored and explained? Chemosphere. 2015; 139: 240–5. https://doi.org/10.1016/j.chemosphere.2015.06.045
- Concha-Guerrero S.I., Souza Brito E.M., Piñón-Castillo H.A., Tarango-Rivero S.H., Caretta C.A., Luna-Velasco A., et al. Effect of CuO nanoparticles over isolated Bacterial strains from agricultural soil. J. Nanomaterials. 2014; 2014: 148743. https://doi.org/10.1155/2014/148743
- Joskoa I., Oleszczukb P., Futa B. The effect of inorganic nanoparticles (ZnO, Cr2O3, CuO and Ni) and their bulk counterparts on enzyme activities in different soils. Geoderma. 2014; 232–234: 528–37. https://doi.org/10.1016/j.geoderma.2014.06.012
- Kim S., Sin H., Lee S., Lee I. Influence of metal oxide particles on soil enzyme activity and bioaccumulation of two plants. J. Microbiol. Biotechnol. 2013; 23(9): 1279–86. https://doi.org/10.4014/jmb.1304.04084
- Timoshenko A.N., Kolesnikov S.I., Kazeev K.Sh., Akimenko Yu.V. The change in the biological indicators of gray sand after contamination with nanoparticles Cu, Zn and Ni. Severo-Kavkazskiy region. Seriya: Estestvennye nauki. 2019; (2): 106–11. https://doi.org/10.23683/0321-3005-2019-2-106-111 (in Russian)
- Janvier C., Villeneuve F., Alabouvette C., Edel-Hermann V., Mateille T., Steinberg C. Soil health through soil disease suppression: which strategy from descriptors to indicators? Soil Biol. Biochem. 2007; 39(1): 1–23. https://doi.org/10.1016/j.soilbio.2006.07.001
- Kolesnikov S.I., Timoshenko A.N., Kazeev K.Sh., Akimenko Yu.V., Myasnikova M.A. Ecotoxicity of copper, nickel, and zinc nanoparticles assessment on the basis of biological indicators of chernozems. Eurasian Soil Sc. 2019; 52(8): 982–7. https://doi.org/10.1134/S106422931908009X
- Yausheva E.V., Sizova E.A., Gavrish I.A., Lebedev S.V., Kayumov F.G. Effect of AL2O3 nanoparticles on soil microbiocenosis, antioxidant status and intestinal microflora of red Californian worm (Eisenia foetida). Sel’skokhozyaystvennaya biologiya. 2017; 52(1): 191–9. https://doi.org/10.15389/agrobiology.2017.1.191rus (in Russian)
- Tsitsuashvili V.S., Minkina T.M., Nevidomskaya D.G., Radzhput V.D., Mandzhieva S.S., Sushkova S.N., et al. Effects of copper nanoparticles on plants and soil microorganisms (literature review). Vestnik agrarnoy nauki Dona. 2017; (3): 93–100. (in Russian)
- Manesh R.R., Grassi G., Bergami E., Marques-Santos L.F., Faleri C., Liberatori G., et al. Co-exposure to titanium dioxide nanoparticles does not affect cadmium toxicity in radish seeds (Raphanus sativus). Ecotoxicol. Environ. Saf. 2018; 148: 359–66. https://doi.org/10.1016/j.ecoenv.2017.10.051
- Ye X., Li H., Wang Q., Chai R., Ma C., Gaoa H., et al. Influence of aspartic acid and lysine on the uptake of gold nanoparticles in rice. Ecotoxicol. Environ. Saf. 2018; 148: 418–25. https://doi.org/10.1016/j.ecoenv.2017.10.056
- Manquián-Cerda K., Cruces E., Rubio M.A., Reyes C., Arancibia-Miranda N. Preparation of nanoscale iron (oxide, oxyhydroxides and zero-valent) particles derived from blueberries: Reactivity, characterization and removal mechanism of arsenate. Ecotoxicol. Environmen. Saf. 2017; 145: 69–77. https://doi.org/10.1016/j.ecoenv.2017.07.004
- Harshiny M., Matheswaran M., Arthanareeswaran G., Kumaran S., Rajasree S. Enhancement of antibacterial properties of silver nanoparticles-ceftriaxone conjugate through Mukia maderaspatana leaf extract mediated synthesis. Ecotoxicol. Environ. Saf. 2015; 121: 135–41. https://doi.org/10.1016/j.ecoenv.2015.04.041
- Sathiya Priya R., Geetha D., Ramesh P.S. Antioxidant activity of chemically synthesized AgNPs and biosynthesized Pongamia pinnata leaf extract mediated AgNPs – A comparative study. Ecotoxicol. Environ. Saf. 2016; 134(Pt. 2): 308–18. https://doi.org/10.1016/j.ecoenv.2015.07.037
- Kokila T., Ramesh P.S., Geetha D. Biosynthesis of AgNPs using Carica Papaya peel extract and evaluation of its antioxidant and antimicrobial activitie. Ecotoxicol. Environ. Saf. 2016; 134(Pt. 2): 467–73. https://doi.org/10.1016/j.ecoenv.2016.03.021
- Bondarenko O., Juganson K., Ivask A., Kasemets K., Mortimer M., Kahru A. Toxicity of Ag, CuO and ZnO nanopar-ticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch. Toxicol. 2013; 87(7): 1181–200. https://doi.org/10.1007/s00204-013-1079-4
- Padmavathy N., Vijayaraghavan R. Enhanced bioactivity of ZnO nanoparticles – an antimicrobial study. Sci. Technol. Adv. Mater. 2008; 9(3): 035004. https://doi.org/10.1088/1468-6996/9/3/035004
- Bautin V.M., ed. Nanotechnologies and Nanomaterials in Agriculture [Nanotekhnologii i nanomaterialy v sel’skom khozyaystve]. Moscow; 2008. (in Russian)
- Fedorenko V.F., Erokhin M.N., Balabanov V.I., Buklagin D.S., Golubev I.G., Ishchenko S.A. Nanotechnologies and Nanomaterials in the Agro-Industrial Complex [Nanotekhnologii i nanomaterialy v agropromyshlennom komplekse]. Moscow; 2011. (in Russian)
- Barabanov P.V., Gerasimov A.V., Blinov A.V., Kravtsov A.A., Kravtsov V.A. Influence of nanosilver on the efficiency of Pisum sativum crops germination. Ecotoxicol. Environ. Saf. 2018; 147: 715–9. https://doi.org/10.1016/j.ecoenv.2017.09.024
- Amooaghaie R., Reza Saeri M., Azizi M. Synthesis, characterization and biocompatibility of silver nanoparticles synthesized from Nigella sativa leaf extract in comparison with chemical silver nanoparticles. Ecotoxicol. Environ. Safety. 2015; 120: 400–8. https://doi.org/10.1016/j.ecoenv.2015.06.025
- Cvjetko P., Milošić A., Domijan A.M., Vinković Vrček I., Tolić S., Štefanić P.P., et al. Toxicity of silver ions and differently coated silver nanoparticles in Allium cepa roots. Ecotoxicol. Environ. Saf. 2017; 137: 18–28. https://doi.org/10.1016/j.ecoenv.2016.11.009
- Foltête A.S., Masfaraud J.F., Bigorgne E., Nahmani J., Chaurand P., Botta C., et al. Environmental impact of sunscreen nano materials: Ecotoxicity and genotoxicity of altered TiO2 nanocomposites on Vicia faba. Environ. Pollut. 2011; 159(10): 2515–22. https://doi.org/10.1016/j.envpol.2011.06.020
- Gladkova M.M., Terekhova V.A. Phytotoxicity of nano-TiO2 and effect of humus preparation. In: SETAC 6th World Congress/SETAC Europe 22nd Annual Meeting. Berlin; 2012: 269–70. Available at: http://berlin.setac.eu/embed/Berlin/Abstractbook2_Part1.pdf
- Wang Z., Zhao J., Liu X., Feng W., White J.C., Xing B., et al. Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ. Sci. Technol. 2012; 46(8): 4434–41. https://doi.org/10.1021/es204212z
- Kim S., Lee S., Lee I. Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in Cucumis sativus. Water Air. Soil Pollut. 2012; 223: 2799–806. https://doi.org/10.1007/s11270-011-1067-3
- Wu S.G., Huang L., Head J., Chen D.R., Kong I.C., Tang Y.J. Phytotoxicity of metal oxide nanoparticles is related to both dissolved metals ions and adsorption of particles on seed surfaces. J. Petrol. Environ. Biotechnol. 2012; 3(4): 126. https://doi.org/10.4172/2157-7463.1000126
- Korotkova A.M., Kvan O.V., Bykova L.A., Kudryavtseva O.S., Videneeva T.S., Vishnyakov A.I. Comparative analysis of morpho-physiological features of triticum vulgare sprouts after exposure to metal nanoparticles. Vestnik Voronezhskogo gosudarstvennogo universiteta inzhenernykh tekhnologiy. 2018; 80(3): 190–5. https://doi.org/10.20914/2310-1202-2018-3-190-195 (in Russian)
- Manceau A., Nagy K.L., Marcus M.A., Lanson M., Geoffroy N., Jacquet T., et al. Formation of metallic copper nanoparticles at the soil-root interface. Environ. Sci. Technol. 2008; 42(5): 1766–72. https://doi.org/10.1021/es072017o
- Parada J., Rubilar O., Fernández-Baldo M.A., Bertolino F.A., Durán N., Seabra A.B. The nanotechnology among US: are metal and metal oxides nanoparticles a nano or mega risk for soil microbial communities? Crit. Rev. Biotechnol. 2019; 39(2): 157–72. https://doi.org/10.1080/07388551.2018.1523865
- Shrestha B., Acosta-Martinez V., Cox S.B., Green M.J., Li S., Cañas-Carrell J.E. An evaluation of the impact of multi-walled carbon nanotubes on soil microbial community structure and functioning. J. Hazard. Mater. 2013; 261: 188–97. https://doi.org/10.1016/j.jhazmat.2013.07.031
- Bondarenko O., Juganson K., Ivask A., Kasemets K., Mortimer M., Kahru A. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch. Toxicol. 2013; 87(7): 1181–200. https://doi.org/10.1007/s00204-013-1079-4
- Gajjar P., Pettee B., Britt D.W., Huang W., Johnson W.P., Anderson A.J. Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440. J. Biol. Eng. 2009; 3: 9. https://doi.org/10.1186/1754-1611-3-9
- Dimkpa C., Mclean J., Anderson A. CuO and ZnO nanoparticles differently affect the secretion of fluorescent siderophores in the beneficial root colonizer, Pseudomonas chlororaphis O6. Nanotoxicology. 2012; 6(6): 635–42. https://doi.org/10.3109/17435390.2011.598246
- Harris Z., Ahmad I. Impact of metal oxide nanoparticles on beneficial soil microorganisms and their secondary metabolites. Int. J. Life Sci. Scienti. Res. 2017; 3(3): 1020–30. https://doi.org/10.21276/ijlssr.2017.3.3.10
- Ge Y., Schimel J.P., Holden P.A. Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ. Sci. Technol. 2011; 45(4): 1659–64. https://doi.org/10.1021/es103040t
- Sirelkhatim А., Shahrom M., Azman S., Noor H.M.K., Chuo A.L., Siti K.M.B., et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Micro. Nano. Lett. 2015; 7(3): 219–42. https://doi.org/10.1007/s40820-015-0040-x
- Ge Y., Priester J.H., Van De Werfhorst L.C., Schimel J.P., Holden P.A. Potential mechanisms and environmental controls of TiO2 nanoparticle effects on soil bacterial communities. Environ. Sci. Technol. 2013; 47(24): 14411–7. https://doi.org/10.1021/es403385c
- Ben-Moshe T., Frenk S., Dror I., Minz D., Berkowitz B. Effects of metal oxide nanoparticles on soil properties. Chemosphere. 2013; 90(2): 640–6. https://doi.org/10.1016/j.chemosphere.2012.09.018
- Frenk S., Ben-Moshe T., Dror I., Berkowitz B., Minz D. Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types. PLoS One. 2013; 8(12): e84441. https://doi.org/10.1371/journal.pone.0084441
- Du W.C., Sun Y.Y., Ji R., Zhu J.G., Wu J.C., Guo H.Y. TiO2 and ZnO Nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J. Environ. Monit. 2011; 13(4): 822–8. https://doi.org/10.1039/c0em00611d
- Simonin M., Richaume A. Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: a review. Environ. Sci. Pollut. Res. Int. 2015; 22(18): 13710–23. https://doi.org/10.1007/s11356-015-4171-x
Supplementary files
