Microstrustureof asphaltenes of bituminous oils

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The microstructure and functional composition of asphaltenes of bituminous oils from the Ashalchinskoye (Permian), Usinskoye (Permian-Carbon) and Nurlatskoye (Devonian) fields (referred to here as the Ashalchinskaya, Usinskaya and Nurlatskaya oils, respectively) and their high- and low-molecular components are studied using infrared spectroscopy and scanning and transmission electron microscopy. It is shown that asphaltenes of the Ashalchinskaya oil are characterized by smooth surface, while those of the Usinskaya and Nurlatskaya oils – by rough and porous surfaces. The sizes of asphaltene nanoaggregates of the Usinskaya and Nurlatskaya oils are smaller than those of the Ashalchinskaya oil, while the asphaltene nanoaggregates of oils from the Ashalchinskaya and Nurlatskaya oils form disordered tangled structures. A distinctive feature of the Usinskaya oil asphaltenes is the presence of better-ordered layers, which are typically associated with crystal-like formations. Asphaltenes of Ashalchinskaya and Nurlatskaya oils are characterized by enhanced aromaticity and branching of aliphatic substituents of their macromolecules, as well as a high relative content of the fragments with a sulfoxide group. Their high-molecular asphaltenes are less aromatic than the low-molecular ones, and the conditional content of carbonyl and sulfoxide groups in their composition is lower. The content of aliphatic fragments and those containing carbonyl groups in the Usinskaya oil asphaltenes is higher. The content of sulfoxide and carbonyl groups in high-molecular asphaltenes of this oil is lower than that in low-molecular asphaltenes, while the content of aromatic fragments is, on the contrary, higher.

Full Text

Restricted Access

About the authors

E. Yu. Kovalenko

Institute of Petroleum Chemistry of Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: kovalenko@ipc.tsc.ru
Russian Federation, 634055, Tomsk

T. V. Cheshkova

Institute of Petroleum Chemistry of Siberian Branch of the Russian Academy of Sciences

Email: chtv12@mail.ru
Russian Federation, 634055, Tomsk

K. A. Cherednichenko

National University of Oil and Gas “Gubkin University”

Email: cherednichenko.k@gubkin.ru
Russian Federation, 119991, Moscow

T. A. Sagachenko

Institute of Petroleum Chemistry of Siberian Branch of the Russian Academy of Sciences

Email: dissovet@ipc.tsc.ru
Russian Federation, 634055, Tomsk

R. S. Min

Institute of Petroleum Chemistry of Siberian Branch of the Russian Academy of Sciences

Email: rsm@ipc.tsc.ru
Russian Federation, 634055, Tomsk

References

  1. Коваленко Е.Ю., Сагаченко Т.А., Мин Р.С., Огородников В.Д., Перевезенцев С.А. // ХТТ. 2023. № 2-3. С. 35. https://doi.org/10.31857/S0023117723020081 [Solid Fuel Chemistry, 2023, vol. 57, no. № 1, p. 29. https://doi.org/10.3103/s0361521923020088]
  2. Peng P., Morales-Izquierdo A., Hogg A., Strauaz O. P. // Energy Fuels. 1997. V. 11. № 6. P. 1171. https://doi.org/10.1021/ef970027c
  3. Cheshkova T.V., Sergun V.P., Kovalenko E.Y., Gerasimova N.N., Sagachenko T.A., Min R.S. // Energy Fuels. 2019. V. 33. № 9. P. 7971. https://doi.org/10.1021/acs.energyfuels.9b00285
  4. Kovalenko E.Yu., Sagachenko T.A., Cherednichenko K.A., Gerasimova N.N., Cheshkova T.V., Min R.S. // Energy Fuels. 2023. V. 37. № 13. P. 8976. https://doi.org/10.1021/acs.energyfuels.3c01048
  5. Taherian Z., Dehaghani A. H. S., Ayatollahi S., Kharrat R. // J. Pet. Sci. Eng. 2021. V. 205. 108824. https://doi.org/10.1016/j.petrol.2021.108824
  6. Zojaji I., Esfandiarian A., Taheri-Shakib J. // Adv. Colloid Interface Sci. 2021. V. 289. 102314. https://doi.org/10.1016/j.cis.2020.102314
  7. Tirado A., Félix G., Al-Muntaser A.A., Chemam M.S., Yuan Ch., Varfolomeev M.A., Ancheyta J. // Energy Fuels. 2023. V. 37. № 11. P. 7927. https://doi.org/10.1021/acs.energyfuels.3c00643
  8. Ramírez-Pradilla J.S., Rubiano J., Rojas-Ruiz F.A., Orrego-Ruiz J.A. // Fuel. 2024. V. 371. Part B. 132081. https://doi.org/10.1016/j.fuel.2024.132081
  9. Silverstein R.M., Webster F.X., Kiemle D.J. Spectrometric identification of organic compounds. New York: JOHN WILEY & SONS, INC, 2005. 550 p.
  10. Герасимова Н.Н., Чешкова Т.В., Коваленко Е.Ю., Сагаченко Т.А., Мин Р.С., Огородников В.Д. // Известия Томского политехнического университета. Инжиниринг георесурсов. 2022. Т. 333. № 9. С. 128. https://doi.org/10.18799/24131830/2022/9/3672
  11. Brondel N., Moynihan E.J.A., Lehane K.N., Eccles K.S., Elcoate C.J., Coles S.J., Lawrencea S.E., Maguire A.R. // CrystEngComm. 2010. V.12. 2910. https://doi.org/10.1039/C000371A
  12. Yang F., Tchoukov P., Dettman H., Teklebrhan R.B., Liu L., Dabros T., Czarnecki J., Masliyah J., Xu Z. // Energy Fuels. 2015. V. 29. № 8. P. 4783. https://doi.org/10.1021/acs.energyfuels.5b00657
  13. Hemmati-Sarapardeh A., Dabir B., Ahmadi M., Mohammadi A.H., Husein M.M. // J. Mol. Liq. 2018. V. 264. P. 410. https://doi.org/10.1016/j.molliq.2018.04.061
  14. Bava Y.B., Geronés M., Buceta D., Rodríguez D.I., López-Quintela M.A., Erben M.F. // Energy Fuels. 2019. V. 33. № 4. P. 2950. https://doi.org/10.1021/acs.energyfuels.8b04318
  15. Salehzadeh M., Husein M.M., Ghotbi C., Dabir B., Taghikhani V. // Fuel. 2022. V. 324. Part A. 124525. https://doi.org/10.1016/j.fuel.2022.124525
  16. Nasyrova Z.R., Kayukova G.P., Gareev B.I., Morozov V.P., Vakhin A.V. // Fuel. 2022. V. 329. 125429. https://doi.org/10.1016/j.fuel.2022.125429
  17. Tang D., Zhao Y., Han D., Xie Y. // Case Stud. Constr. Mater. 2023. V. 19. e02578. https://doi.org/10.1016/j.cscm.2023.e02578
  18. Sharma A., Groenzin H., Tomita A., Mullins O.C. // Energy Fuels. 2002. V. 16. № 2. P. 490. https://doi.org/10.1021/ef010240f
  19. Pérez-Hernández R., Mendoza-Anaya D., Mondragón-Galicia G., Espinosa M.E., Rodrı́guez-Lugo V., Lozada M., Arenas-Alatorre J. // Fuel. 2003. V. 82. № 8. P. 977. https://doi.org/10.1016/S0016-2361(02)00359-9
  20. Trejo F., Ancheyta J., Rana M.S. // Energy Fuels. 2009. V. 23. № 1. P. 429. https://doi.org/10.1021/ef8005405
  21. Arenas-Alatorre J., Schabes-Retchkiman P.S., Rodriguez-Lugo V. // Energy Fuels. 2016. V. 30. № 5. P. 3752. https://doi.org/10.1021/acs.energyfuels.5b02407
  22. AlHumaidan F.S., Rana M.S., Tanoli N.J., Lababidi H.M.S., Al-Najdi N.A. // Arab. J. Chem. 2020. V. 13. № 5. P. 5377. https://doi.org/10.1016/j.arabjc.2020.03.016
  23. Elkhati O., Zhang B., Goual L. // Energy Fuels. 2022. V. 36. № 16. P. 8692. https://doi.org/10.1021/acs.energyfuels.2c00925

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. IR spectra of asphaltenes (a) of bituminous oils I–III and their high- (b) and low-molecular (c) components.

Download (626KB)
3. Fig. 2. SEM micrographs of asphaltenes (a) – (c) of bituminous oils I–III and their high- (g) – (e) and low-molecular (g) – (i) components at a resolution of 200 µm.

Download (932KB)
4. Fig. 3. TEM image of asphaltene particles of bituminous oils I–III at a resolution of 100 nm (a)–(c), at a resolution of 10 nm (g)–(i) and particle size distribution (g)–(e).

Download (934KB)
5. Fig. 4. TEM image of asphaltene particles of high- and low-molecular components of oil II at a resolution of 100 nm (a), (c) and at a resolution of 10 nm (b), (d).

Download (520KB)

Copyright (c) 2025 Russian Academy of Sciences