Changes in the molecular structure of asphaltenes during cracking of tars in the presence of calcium acetate

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The results of investigation of asphaltenes isolated from liquid products of initiated cracking of two tar samples at 500°C in the presence of calcium acetate additive are presented. Characteristic changes in the composition of cracking products depending on the amount of the additive are shown. It is established that the formation of solid products of compaction depends not only on the initial content of asphaltenes, but also on their structure. Changes in the structure-group parameters of asphaltenes in the process of initiated cracking of tar sands have been studied. A distinctive feature of tar cracking in the presence of calcium acetate is that the use of the additive promotes both the destruction of structural blocks and a significant decrease in their number in the composition of asphaltene molecules. In addition, due to the destruction of aliphatic substituents and naphthenic cycles, the averaged asphaltene molecules become more compact and the proportion of condensed aromatic structures in their composition increases significantly.

全文:

受限制的访问

作者简介

A. Goncharov

FGBUN Institute of Petroleum Chemistry SB RAS

编辑信件的主要联系方式.
Email: mad111-2011@mail.ru
俄罗斯联邦, 634055 Tomsk

E. Krivtsov

FGBUN Institute of Petroleum Chemistry SB RAS

Email: john@ipc.tsc.ru
俄罗斯联邦, 634055 Tomsk

参考

  1. Leon A.Y., Guzman A., Laverde D., Chaudhari R.V., Subramaniam B., Bravo-Suarez J.J. // Energy Fuels. 2017. V. 31. № 4. P. 3868.
  2. Zhao S., Gao H., Pu W., Varfolomeev M.A., Yuan C. // Fuel. 2022. V. 313. P. 122704.
  3. Глаголева О.Ф., Капустин В.М. // Нефтехимия. 2020. Т. 60. № 6. С. 745. https://doi.org/10.31857/S002824212006009X. [Petroleum Chemistry. 2020. vol. 60, no. 11. p. 1207. https://doi.org/10.1134/S0965544120110092].
  4. Lababidi H.M.S., Sabti H.M., AlHumaidan F.S. // Fuel. 2014. № 117. P. 59. https://doi.org/10.1016/j.fuel.2013.09.048.
  5. Eletskii P.M., Sosnin G.A., Zaikina O.O., Kukushkin R.G., Yakovlev V. // Journal of Siberian Federal University. Chemistry. 2017. V. 10. №. 4. P. 545–572.
  6. Kheirolahi S., BinDanbag M., Bagherzadeh H., Abbasi Z. // Fuel. 2024. V. 371. P. 131884. https://doi.org/10.1016/j.fuel.2024.131884.
  7. Felix G., Tirado A., Varfolomeev M.A., Al-muntaser A., Suwaid M., Yuan Ch., Ancheyata J. // Geoenergy Science and Engineering. 2023. V. 230. P. 212242. https://doi.org/10.1016/j.geoen.2023.212242.
  8. Нальгиева Х.В. Копытов М.А. // ХТТ. 2024. № 2. С. 23. https://doi.org/10.31857/S0023117724020059 [Solid Fuel Chemistry. 2024. vol. 58, no. 2. p. 103. https://doi.org/10.3103/S0361521924020083]
  9. Гончаров А.В., Кривцов Е.Б. // ХТТ. 2022. № 2. С. 26. https://doi.org/10.31857/S002311772202013X [Solid Fuel Chemistry, 2022, vol. 56, no. 2, p. 108. https://doi.org/10.3103/S0361521922020136].
  10. Хаджиев С.Н., Кадиев Х.М., Басин М.Б., Имаров А.К., Усманов Р.М. Способ переработки остаточных нефтепродуктов // Патент России № 1587911. 1994.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Scheme of transformations of the average asphaltene molecule of the Omsk Oil Refinery under different conditions: (a) asphaltene molecule of the initial tar; (b) after cracking at 500°C; (c) in the presence of 0.19 wt. % calcium acetate additive; (d) in the presence of 9.75 wt. % calcium acetate additive.

下载 (445KB)

版权所有 © Russian Academy of Sciences, 2025