Gas sensor based а composite of MoS2 and functionalized multi-walled carbon nanotubes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

A gas sensor based on MoS2 and functionalized multi-walled carbon nanotubes (MWCNTs) was obtained by drop casting. A coating was created in which the sensitive material consisted of functionalized MWCNTs (treated in a mixture of H2SO4/HNO3, 3 : 1 vol %), coated with MoS2 nanoplatelets. Sensor tests were carried out in dynamic mode with respect to two different types of gases (NO2 and NH3). The sensor demonstrated high relative sensitivity (|ΔR/R0|=36%) for 10 ppm NO2 at room temperature (25 ± 1°C). When determining ammonia, the response of the gas sensor (at 25 ± 1°C) was significantly lower compared to nitrogen dioxide detection and varied in the range of 5–12.5% at 50–400 ppm. It was shown that functionalized MWCNTs acted as a conductive additive, which allowed for a high response of the sensor based on the MoS2/f-MWCNT composite already at room temperature.

Full Text

Restricted Access

About the authors

A. A. Shishin

Novosibirsk State Technical University

Author for correspondence.
Email: tmyora0@gmail.com
Russian Federation, 630073 Novosibirsk

V. Golovakhin

Novosibirsk State Technical University

Email: golovaxin-valera@mail.ru
Russian Federation, 630073 Novosibirsk

E. A. Maksimovsky

Nikolaev Institute of Inorganic Chemistry SB RAS

Email: eugene@niic.nsc.ru
Russian Federation, 630090 Novosibirsk

A. V. Ishchenko

Boreskov Institute of Catalysis SB RAS

Email: arcady.ishchenko@gmail.com
Russian Federation, 630090 Novosibirsk

M. V. Popov

Novosibirsk State Technical University; Mendeleev University of Chemical Technology of Russia

Email: popovmaxvik@gmail.com
Russian Federation, 630073 Novosibirsk; 125047 Moscow

D. O. Kondrashev

Ufa State Petroleum Technological University

Email: Kondrashev.DO@gazprom-neft.ru
Russian Federation, 450064 Ufa

A. G. Bannov

Novosibirsk State Technical University

Email: bannov_a@mail.ru
Russian Federation, 630073 Novosibirsk

References

  1. de Menzes R.F., Pirani F., Coletti C., de Macedo L.G.M., Gargano R. // Materials Today Communications. 2022. V. 31. P. 103426. https://doi.org/10.1016/j.mtcomm.2022.103426
  2. Amu-Darko J.N.O., Hussain S., Gong Q., Zhang X., Xu Z., Wang M., Liu G., Qiao G. // Journal of Environmental Chemical Engineering. 2022. V. 11. № 1. P. 109211. https://doi.org/10.1016/j.jece.2022.109211
  3. Zhang L., Ma C., Zhang J., Huang Y., Xu H., Lu H., Xu K.W., Ma F. // Applied Surface Science. 2022. V. 600. P. 154157. https://doi.org/10.1016/j.apsusc.2022.154157
  4. Kumar A.N., Pal. K. // Materials Advances. 2022. V. 3. № 12. P. 5151. https://doi.org/10.1039/D2MA00301E
  5. Lasek J.A., Lajnert R. // Applied Sciences. 2022. V. 12. № 20. P. 10429. https://doi.org/10.3390/app122010429
  6. Chen S., Qian G., Ghanem B., Wang Y., Shu Z., Zhao X., Yang L., Liao X., Zheng Y. // Advanced Science. 2022. V. 9. № 32. P. 03460. https://doi.org/10.1002/advs.202203460
  7. Naief M.F., Mohammed S.N., Ahmed Y.N., Mohammed A.M. // Inorganic Chemistry Communication. 2023. V. 157. P. 111338. https://doi.org/10.1016/j.inoche.2023.111338
  8. Ahmed Y.N., faiad naief M., Mohammed S.N., Mohammed A.M. // Inorganic Chemistry Communication. 2023. V. 152. P. 110741. https://doi.org/10.1016/j.inoche.2023.110741
  9. Espinosa E.H., Ionescu R., Liobet E., Felten A., Bittencourt C., Sotter E., Topalian Z., Heszler P., Granqvist C.G., Pireaux J.J. // Journal of the Electrochemical Society. 2007. V. 154. № 5. P. 141. https://doi.org/10.1149/1.2667855
  10. Hung N.M., Chinh N.D., Nguyen T.D., Kim E.T., Choi G., Kim C., Kim D. // Ceramics International. 2020. V. 46. № 18. P. 29233. https://doi.org/10.1016/j.ceramint.2020.08.097
  11. Casanova-Chafer J., Navarrete E., Llobet E. // Proceedings. 2018. V. 2. № 13. P. 874. https://doi.org/10.3390/proceedings2130874
  12. Al-Makram N.M., Saleh W.R. // AIP Conf. Proc. 2020. V. 2290. № 1. P. 050031. https://doi.org/10.1063/5.0028240
  13. Singh S., Saggu I, S, m Chen K., Xuan Z., Swihart M.T., Sharma S. // ACS Applied Materials & Interfaces. 2022. V. 14. № 35. P. 40382. https://doi.org/10.1021/acsami.2c09069
  14. Zhou Q., Zhu L., Zheng C., Wang J. // ACS Applied Materials & Interfaces. 2021. V. 13. № 34. P. 41339. https://doi.org/10.1021/acsami.1c12213
  15. Singhal A.V., Charaya H., Lahiri I. // Critical Reviews in Solid State and Materials Sciences. 2017. V. 42. № 6. P. 499. https://doi.org/10.1080/10408436.2016.1244656
  16. Srivastava S., Singh P., Gupta G. // Micro and Nanostructures. 2022. V. 172. P. 207452. https://doi.org/10.1016/j.micrna.2022.207452
  17. Chen J., Lv H., Bai X., Liu Z., He L., Wang J., Zhang Y., Sun B., Kan K., Shi K. // Microporous and Mesoporous Materials. 2021. V. 321. P. 111108. https://doi.org/10.1016/j.micromeso.2021.111108
  18. Nguyet Q.T.M., Duy N.V., Hung C.M., Hoa N.D., Hieu N.V. // Applied Physics Letters. 2018. V. 112. № 15. P. 153110. https://doi.org/10.1063/1.5023851
  19. Xiong Y., Liu W., Wu K., Liu T., Chen Y., Wang X., Tian J. // Journal of Alloys and Compounds. 2022. V. 927. P. 166962. https://doi.org/10.1016/j.jallcom.2022.166962
  20. Kanaujiya N., Anupam, Golimar K., Pandey P.C., Jyoti, Varma G.D. // AIP Conf. Proc. 2018. V. 1953. № 2. P. 030142. https://doi.org/10.1063/1.5032477
  21. Ayesh A.I. // Phys. Lett. Sect. A Gen. At. Solid State Phys. 2022. V. 441. P. 128163. https://doi.org/10.1016/j.physleta.2022.128163
  22. Das B., Behera S., Satpati B., Ghosh R. // Journal of Hazardous Materials. 2022. V. 428. P. 128252. https://doi.org/10.1016/j.jhazmat.2022.128252
  23. Monoreo O., Claramunt S., Vescio G., Lahlou H., Leghrib R., Prades J.D. // Transducers & Eurosensors XXVII. 2013. P. 1154. https://doi.org/10.1109/Transducers.2013.6626977
  24. Lee J.S., Kwon O.S., Shin D.H., Jang J. // Journal of Materials Chemistry A. 2013. V. 1. № 32. P. 9099. http://doi.org/10.1039/C3TA11658A
  25. Ryu J., Shim S., Song J., Park J., Kim H.S., Lee S., Shin J.C., Mun J., Kang S. // Nanomaterials. 2023. V. 13. № 3. P. 573. https://doi.org/10.3390/nano13030573
  26. Chu S., Wu M., Yeh T., Lee C., Lee H. // ACS Sensors. 2024. V. 9. № 1. P. 118. https://doi.org/10.1021/acssensors.3c01742
  27. Li W., Shahbazi M., Xing K., Tesfamichael T., Motta N., Qi D. // Nanomaterials. 2022. V. 12. № 8. P. 1303. https://doi.org/10.3390/nano12081303
  28. Neetika, Kumar A., Chandra R., Malik V.K. // Thin Solid Films. 2021. V. 725. P. 138625. https://doi.org/10.1016/j.tsf.2021.138625
  29. Kanaujilya N., Anupam, Golimar K., Pandey P.C., Jyoti, Varma G.D. // AIP Conf. Proc. 2018. V. 1953. № 1. P. 030142. https://doi.org/10.1063/1.5032477

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Methodology for creating a gas sensor based on MoS2/f-MWCNTs. Functionalized MWCNTs are marked with an asterisk.

Download (153KB)
3. Fig. 2. Micrographs of a film of a MoS2/f-MWCNTs sample: SEM – sample on a PCB substrate (a)–(g); TEM (d)–(l).

Download (840KB)
4. Fig. 3. Relative sensitivity of the gas sensor with respect to NO2 (25 ± 1 °C, φ = 2.0 ± 0.25%) based on: MoS2/f-MWCNTs (a); f-MWCNTs (b).

Download (132KB)
5. Fig. 4. Relative sensitivity of the gas sensor with respect to NH3 (25 ± 1 °C, φ = 2.0 ± 0.25%) based on: MoS2/f-MWCNTs (a); f-MWCNTs (b).

Download (157KB)

Copyright (c) 2025 Russian Academy of Sciences