Gas sensor based а composite of MoS2 and functionalized multi-walled carbon nanotubes
- Authors: Shishin A.A.1, Golovakhin V.1, Maksimovsky E.A.2, Ishchenko A.V.3, Popov M.V.1,4, Kondrashev D.O.5, Bannov A.G.1
-
Affiliations:
- Novosibirsk State Technical University
- Nikolaev Institute of Inorganic Chemistry SB RAS
- Boreskov Institute of Catalysis SB RAS
- Mendeleev University of Chemical Technology of Russia
- Ufa State Petroleum Technological University
- Issue: No 3 (2025)
- Pages: 31–37
- Section: Articles
- URL: https://ruspoj.com/0023-1177/article/view/689503
- DOI: https://doi.org/10.31857/S0023117725030047
- EDN: https://elibrary.ru/LFQWZI
- ID: 689503
Cite item
Abstract
A gas sensor based on MoS2 and functionalized multi-walled carbon nanotubes (MWCNTs) was obtained by drop casting. A coating was created in which the sensitive material consisted of functionalized MWCNTs (treated in a mixture of H2SO4/HNO3, 3 : 1 vol %), coated with MoS2 nanoplatelets. Sensor tests were carried out in dynamic mode with respect to two different types of gases (NO2 and NH3). The sensor demonstrated high relative sensitivity (|ΔR/R0|=36%) for 10 ppm NO2 at room temperature (25 ± 1°C). When determining ammonia, the response of the gas sensor (at 25 ± 1°C) was significantly lower compared to nitrogen dioxide detection and varied in the range of 5–12.5% at 50–400 ppm. It was shown that functionalized MWCNTs acted as a conductive additive, which allowed for a high response of the sensor based on the MoS2/f-MWCNT composite already at room temperature.
Full Text

About the authors
A. A. Shishin
Novosibirsk State Technical University
Author for correspondence.
Email: tmyora0@gmail.com
Russian Federation, 630073 Novosibirsk
V. Golovakhin
Novosibirsk State Technical University
Email: golovaxin-valera@mail.ru
Russian Federation, 630073 Novosibirsk
E. A. Maksimovsky
Nikolaev Institute of Inorganic Chemistry SB RAS
Email: eugene@niic.nsc.ru
Russian Federation, 630090 Novosibirsk
A. V. Ishchenko
Boreskov Institute of Catalysis SB RAS
Email: arcady.ishchenko@gmail.com
Russian Federation, 630090 Novosibirsk
M. V. Popov
Novosibirsk State Technical University; Mendeleev University of Chemical Technology of Russia
Email: popovmaxvik@gmail.com
Russian Federation, 630073 Novosibirsk; 125047 Moscow
D. O. Kondrashev
Ufa State Petroleum Technological University
Email: Kondrashev.DO@gazprom-neft.ru
Russian Federation, 450064 Ufa
A. G. Bannov
Novosibirsk State Technical University
Email: bannov_a@mail.ru
Russian Federation, 630073 Novosibirsk
References
- de Menzes R.F., Pirani F., Coletti C., de Macedo L.G.M., Gargano R. // Materials Today Communications. 2022. V. 31. P. 103426. https://doi.org/10.1016/j.mtcomm.2022.103426
- Amu-Darko J.N.O., Hussain S., Gong Q., Zhang X., Xu Z., Wang M., Liu G., Qiao G. // Journal of Environmental Chemical Engineering. 2022. V. 11. № 1. P. 109211. https://doi.org/10.1016/j.jece.2022.109211
- Zhang L., Ma C., Zhang J., Huang Y., Xu H., Lu H., Xu K.W., Ma F. // Applied Surface Science. 2022. V. 600. P. 154157. https://doi.org/10.1016/j.apsusc.2022.154157
- Kumar A.N., Pal. K. // Materials Advances. 2022. V. 3. № 12. P. 5151. https://doi.org/10.1039/D2MA00301E
- Lasek J.A., Lajnert R. // Applied Sciences. 2022. V. 12. № 20. P. 10429. https://doi.org/10.3390/app122010429
- Chen S., Qian G., Ghanem B., Wang Y., Shu Z., Zhao X., Yang L., Liao X., Zheng Y. // Advanced Science. 2022. V. 9. № 32. P. 03460. https://doi.org/10.1002/advs.202203460
- Naief M.F., Mohammed S.N., Ahmed Y.N., Mohammed A.M. // Inorganic Chemistry Communication. 2023. V. 157. P. 111338. https://doi.org/10.1016/j.inoche.2023.111338
- Ahmed Y.N., faiad naief M., Mohammed S.N., Mohammed A.M. // Inorganic Chemistry Communication. 2023. V. 152. P. 110741. https://doi.org/10.1016/j.inoche.2023.110741
- Espinosa E.H., Ionescu R., Liobet E., Felten A., Bittencourt C., Sotter E., Topalian Z., Heszler P., Granqvist C.G., Pireaux J.J. // Journal of the Electrochemical Society. 2007. V. 154. № 5. P. 141. https://doi.org/10.1149/1.2667855
- Hung N.M., Chinh N.D., Nguyen T.D., Kim E.T., Choi G., Kim C., Kim D. // Ceramics International. 2020. V. 46. № 18. P. 29233. https://doi.org/10.1016/j.ceramint.2020.08.097
- Casanova-Chafer J., Navarrete E., Llobet E. // Proceedings. 2018. V. 2. № 13. P. 874. https://doi.org/10.3390/proceedings2130874
- Al-Makram N.M., Saleh W.R. // AIP Conf. Proc. 2020. V. 2290. № 1. P. 050031. https://doi.org/10.1063/5.0028240
- Singh S., Saggu I, S, m Chen K., Xuan Z., Swihart M.T., Sharma S. // ACS Applied Materials & Interfaces. 2022. V. 14. № 35. P. 40382. https://doi.org/10.1021/acsami.2c09069
- Zhou Q., Zhu L., Zheng C., Wang J. // ACS Applied Materials & Interfaces. 2021. V. 13. № 34. P. 41339. https://doi.org/10.1021/acsami.1c12213
- Singhal A.V., Charaya H., Lahiri I. // Critical Reviews in Solid State and Materials Sciences. 2017. V. 42. № 6. P. 499. https://doi.org/10.1080/10408436.2016.1244656
- Srivastava S., Singh P., Gupta G. // Micro and Nanostructures. 2022. V. 172. P. 207452. https://doi.org/10.1016/j.micrna.2022.207452
- Chen J., Lv H., Bai X., Liu Z., He L., Wang J., Zhang Y., Sun B., Kan K., Shi K. // Microporous and Mesoporous Materials. 2021. V. 321. P. 111108. https://doi.org/10.1016/j.micromeso.2021.111108
- Nguyet Q.T.M., Duy N.V., Hung C.M., Hoa N.D., Hieu N.V. // Applied Physics Letters. 2018. V. 112. № 15. P. 153110. https://doi.org/10.1063/1.5023851
- Xiong Y., Liu W., Wu K., Liu T., Chen Y., Wang X., Tian J. // Journal of Alloys and Compounds. 2022. V. 927. P. 166962. https://doi.org/10.1016/j.jallcom.2022.166962
- Kanaujiya N., Anupam, Golimar K., Pandey P.C., Jyoti, Varma G.D. // AIP Conf. Proc. 2018. V. 1953. № 2. P. 030142. https://doi.org/10.1063/1.5032477
- Ayesh A.I. // Phys. Lett. Sect. A Gen. At. Solid State Phys. 2022. V. 441. P. 128163. https://doi.org/10.1016/j.physleta.2022.128163
- Das B., Behera S., Satpati B., Ghosh R. // Journal of Hazardous Materials. 2022. V. 428. P. 128252. https://doi.org/10.1016/j.jhazmat.2022.128252
- Monoreo O., Claramunt S., Vescio G., Lahlou H., Leghrib R., Prades J.D. // Transducers & Eurosensors XXVII. 2013. P. 1154. https://doi.org/10.1109/Transducers.2013.6626977
- Lee J.S., Kwon O.S., Shin D.H., Jang J. // Journal of Materials Chemistry A. 2013. V. 1. № 32. P. 9099. http://doi.org/10.1039/C3TA11658A
- Ryu J., Shim S., Song J., Park J., Kim H.S., Lee S., Shin J.C., Mun J., Kang S. // Nanomaterials. 2023. V. 13. № 3. P. 573. https://doi.org/10.3390/nano13030573
- Chu S., Wu M., Yeh T., Lee C., Lee H. // ACS Sensors. 2024. V. 9. № 1. P. 118. https://doi.org/10.1021/acssensors.3c01742
- Li W., Shahbazi M., Xing K., Tesfamichael T., Motta N., Qi D. // Nanomaterials. 2022. V. 12. № 8. P. 1303. https://doi.org/10.3390/nano12081303
- Neetika, Kumar A., Chandra R., Malik V.K. // Thin Solid Films. 2021. V. 725. P. 138625. https://doi.org/10.1016/j.tsf.2021.138625
- Kanaujilya N., Anupam, Golimar K., Pandey P.C., Jyoti, Varma G.D. // AIP Conf. Proc. 2018. V. 1953. № 1. P. 030142. https://doi.org/10.1063/1.5032477
Supplementary files
