Thermodynamic characteristic of nanocarbon adsorbents from the high-moor peat of the European North of Russia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

By thermochemical activation with NaOH from the high-moor peat of the European North Russia, activated nano-carbons were obtained with a pore surface area of 2335 m²/g and a total pore volume of 1.44 cm³/g, with predominance of micropores. One of the designs of the adsorption-thermodynamic approach in the evaluation of thermodynamic functions was considered. Based on the experimental data of adsorption of standard marker-adsorbent – liquid nitrogen on active coals by means of isotherm equations of differential isosterial adsorption heat obtained from known adsorption model approximations (Langmuir, Brunauer–Emmett–Tellier, Aranovich), a non-traditional algorithm for calculating differential thermodynamic functions (enthalpy, entropy, free energy) on the single adsorption isotherm was proposed.

Full Text

Restricted Access

About the authors

N. A. Makarevich

Educational institution “Military Academy of Belarus”; Northern (Arctic) Federal University named after M. V. Lomonosov

Author for correspondence.
Email: nikma@tut.by
Belarus, 220000 Minsk; 163002 Arkhangelsk, Russia

I. N. Zubov

Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences

Email: zubov.ivan@fciarctic.ru
Russian Federation, 163002 Arkhangelsk

Y. A. Savrasova

Northern (Arctic) Federal University named after M. V. Lomonosov

Email: yulia925@mail.ru
Russian Federation, 163002 Arkhangelsk

N. I. Bogdanovich

Northern (Arctic) Federal University named after M. V. Lomonosov

Email: n.bogdanovich@narfu.ru
Russian Federation, 163002 Arkhangelsk

S. I. Tretyakov

Northern (Arctic) Federal University named after M. V. Lomonosov

Email: s.tretiakov@narfu.ru
Russian Federation, 163002 Arkhangelsk

References

  1. Лиштван И.И., Базин Е.Т., Гамаюнов Н.И., Терентьев А.А. Физика и химия торфа. М.: Недра. 1989. 304 с.
  2. CAFF. Conservation of Arctic Flora and Fauna [Electronic resource]. URL: https://www.caff.is/
  3. Зубов И.Н., Орлов А.С., Попов А.Н., Пономарева Т.И., Лосюк Г.Н. // ХТТ. 2022. № 5. С. 18.иhttps://doi.org/10.31857/S0023117722050127
  4. Серебренникова О.В., Селянина С.Б., Русских И.В., Стрельникова Е.Б. // ХТТ. 2021. № 4. С. 51. https://doi.org/10.31857/S002311772104006X [Solid Fuel Chemistry. 2021. V. 55. № 4. Р. 252. https://doi.org/10.3103/S0361521921040066]
  5. Орлов А.С., Зубов И.Н., Яковлев Е.Ю., Богданович Н.И. // ХТТ. 2023. № 5. С. 50. https://doi.org/10.31857/S0023117723050055
  6. Чибисова В.Г., Селянина С.Б., Ярыгина О.Н., Пономарева Т.И., Штанг А.К., Котова Е.И. // Геосферные исследования. 2022. № 3. С. 126. https://doi.org/10.17223/25421379/24/8
  7. IEA Bioenergy report. How bioenergy contributes to a sustainable future. 2023. 224 p.
  8. Активные угли. Эластичные сорбенты. Катализаторы, осушители и химические поглотители на их основе: каталог / Под общ. ред. Мухина В.М. М.: Руда и металлы. 2003. 280 с.
  9. Саврасова Ю.А., Богданович Н.И., Макаревич Н.А., Белецкая М.Г. // Известия высших учебных заведений. Лесной журнал. 2012. № 1. С. 107.
  10. Bergna D., Hu T., Prokkola H., Romar H., Lassi U. // Waste and Biomass Valorization. 2020. V. 11. P. 2837. https://doi.org/10.1007/s12649-019-00584-2
  11. Harmas M., Palm R., Thomberg T., Harmas R. Koppel M., Paalo M., Tallo I., Romann T., Janes A., Lust E. // Journal of Applied Electrochemistry. 2020. V. 50. P. 15. https://doi.org/10.1007/s10800-019-01364-5
  12. Зубов И.Н., Саврасова Ю.А., Богданович Н.И. // ХТТ. 2024. № 3. С. 18. https://doi.org/10.31857/S0023117724030036 [Solid Fuel Chemistry. 2024. № 3. Р. 185. https://doi.org/10.3103/S0361521924700083]
  13. Сычев В.В., Вассерман А.А., Козлов А.Д., Спиридонов Г.А., Цымарный В.А. Термодинамические свойства азота. М.: Издательство стандартов. 1977. 352 с.
  14. Меньщиков И.Е., Фомкин А.А., Школин А.В. // Физикохимия поверхности и защита материалов. 2021. Т. 57. № 5. С. 469. https://doi.org/10.31857/S0044185621050193 [Protection of Metals and Physical Chemistry of Surfaces. 2021. V. 57. № 5. Р. 883. https://doi.org/10.1134/S2070205121050191]
  15. Макаревич Н.А. // Журнал физической химии. 1992. Т. 66. № 5. С. 1288.
  16. Аранович Г.Л. // Журнал физической химии. 1988. Т. 62. № 11. С. 3000.
  17. Макаревич Н.А. Межфазная граница “газ–жидкость–твердое тело”: монография. Архангельск.: САФУ. 2018. 411 c.
  18. Лопаткин А.А. Теоретические основы физической, адсорбции. М.: Изд-во МГУ. 1983. 345 с.
  19. Hill T.L. Theory of Physical Adsorption Advances in catalysis and related subjects / Eds. Frankerburg Y.I. et al. N.Y.: Acad. Press. 1952. V. 4. P. 211.
  20. Myers A.L. // AIChE Journal. 2002. V. 48(1). P. 145. https://doi.org/10.1002/aic.690480115
  21. Макаревич Н.А. // Известия вузов. Лесной журнал. 2021. № 2/380. С. 194. https://doi.org/10.37482/0536-1036-2021-2-194-212

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Experimental isotherms of N2 adsorption on peat (a), on AC (b).

Download (92KB)
3. Fig. 2. Experimental isotherms normalized by adsorption θ = a/am and by pressure P = p/ps, in the L, BET, Ar models on AC (see Table 3 for am values).

Download (100KB)
4. Fig. 3. Isotherms of differential thermodynamic characteristics of N2 adsorption on the original peat (a) on AC (b).

Download (330KB)

Copyright (c) 2025 Russian Academy of Sciences