Influence of the Conditions of Mechanical Processing of Oxidized Coal on the Properties of Humic Acids

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The results of a study of the effect of mechanical energy on the properties of humic acids in the course of mechanical processing of oxidized coal in a planetary mill are presented. It is shown that, upon the mechanical action on coal in the presence of alkaline and oxidizing alkaline reagents in a planetary-type mill with steel balls used as grinding bodies, the yield of humic acids increased by 25–33%; the molecular weight decreased and the concentration of functional groups increased in comparison with those of humic acids obtained by mechanical processing with ceramic balls. A change in the density of balls affects the mechanics of their motion and the amount of energy during the fall.

Sobre autores

N. Yudina

Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences

Email: natal@ipc.tsc.ru
Tomsk, 634055 Russia

A. Savel’eva

Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: anna@ipc.tsc.ru
Tomsk, 634055 Russia

Bibliografia

  1. Bossuyt H., Six J., Hendrix P.F. // Soil Biol. Biochem. 2005. V. 37. P. 251. https://doi.org/10.1016/J.SOILBIO.2004.07.035
  2. Lal R. // Science. 2004. V. 304. P.1623.
  3. Мальцева Е.В., Нечаев Л.В., Юдина Н.В., Чайковская О.Н. // ХТТ. 2017. № 1. С. 3. [Solid Fuel Chemistry, 2017, vol. 51, no. 1, p. 3. https://doi.org/10.3103/S0361521917010062].https://doi.org/10.7868/S0023117717010066
  4. Савельева А.В., Мальцева Е.В., Юдина Н.В. // ХТТ. 2017. № 1. С. 56. [Solid Fuel Chemistry, 2017, vol. 51, no. 1, p. 51. https://doi.org/10.3103/S0361521917010098].https://doi.org/10.7868/S0023117717010091
  5. Иванов А.А., Мальцева Е.В., Юдина Н.В. // ХТТ. 2016. № 1. С. 9. [Solid Fuel Chemistry, 2016, vol. 50, no. 1. P. 7. https://doi.org/10.3103/S0361521916010055].https://doi.org/10.7868/S0023117716010059
  6. Urazova T.S., Bychkov A.L., Lomovskii O.I. // Russian chemical Bulletin. 2015. V. 64. I. 5. P. 1183.
  7. Скрипкина Т.С., Бычков А.Л., Тихова В.Д., Ломовский О.И. // Химия твердого топлива. 2018. № 6. Р. 16–21. [Solid Fuel Chemistry, 2018, vol. 52, no. 6. P. 356. https://doi.org/10.3103/S036152191806010110.3103/S0361521918060101]https://doi.org/10.1134/S0023117718060117
  8. Ломовский О.И., Болдырев В.В. Механохимия в решении экологических задач: аналитический обзор. Новосибирск.: ГПНТБ СО РАН. 2006. Сер. Экология. Вып. 79. 221 с.
  9. Baláž P., LaCount R.B., Kern D.G. // Fuel. 2001. V. 80. № 5. P. 665. https://doi.org/10.1016/S0016-2361(00)00146-0
  10. Turčániová L., Baláž P. // J. Mat. Synthes. Proc. 2000. V. 8. № 5–6. P. 365. https://doi.org/10.1023/A:1011310915324
  11. Boldyrev V.V. // Rus. Chem. Rev. 2006. V. 75. № 3. P. 177. https://doi.org/10.1070/RC2006V075N03ABEH001205
  12. Skybova M., Turčániová Ľ., Čuvanová S., Zubrik A., Hredzák S., Hudymáčová, Ľ. // J. Alloys Compoun. 2007. V. 434. P. 842. https://doi.org/10.1016/J.JALLCOM.2006.08.310
  13. Proidakov A.G. // Solid Fuel Chemistry. 2009. V. 43, no. 1, p. 9.https://doi.org/10.3103/S0361521909010030
  14. Бутягин П.Ю., Стрелецкий А.Н. //Физика твердого тела. 2005. Т. 47. Вып. 5. С. 830. [Physics of the Solid State. 2005. V. 47. № 5. P. 856].
  15. Skripkina T.S., Bychkov A.L., Tikhova V.D., Smolya-kov B.S., Lomovsky O.I. // Environ. Technol. Innov. 2018. V. 11. P. 74.
  16. El Hajjouji H., Fakharedine N., Baddi G.A., Winterton P., Bailly J.R., Revel J.C., Hafidi M. // Bioresourc. Technol. 2007. V. 98. № 18. P. 3513. https://doi.org/10.1016/j.biortech.2006.11.033
  17. Nasser A., Mingelgrin U. // Appl. Clay Sci. 2012. V. 67. P. 141. https://doi.org/10.1002/CYIN.2013341

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (31KB)
3.

Baixar (50KB)
4.

Baixar (32KB)

Declaração de direitos autorais © Н.В. Юдина, А.В. Савельева, 2023