Kinetics of the Thermal Decomposition of Oil Residue and Its SARA Fractions in the Presence of Vegetable Oil

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Dynamic thermogravimetry was used to study the thermal degradation of the oil residue of Usinskaya oil and its saturated, aromatic, resin, and asphaltene (SARA) fractions in the presence of sunflower oil. Thermolysis experiments were carried out in an atmosphere of pure argon. Based on the data of thermogravimetric analysis, the activation energies of the thermal degradation of the oil residue, resins, asphaltenes, saturated and aromatic hydrocarbons, and their mixtures with sunflower oil were calculated in the temperature range of a maximum weight loss rate. It was shown that the addition of 10.0 wt % sunflower oil to the oil residue and its components led to a decrease in the activation energy. This fact indicates that the sunflower oil additive affected the mechanism of thermal degradation of crude oil and its components. The greatest change in the activation energy was observed for asphaltenes: ΔЕа = 48.4 kJ/mol.

Sobre autores

S. Boyar

Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences

Email: bsv@ipc.tsc.ru
Tomsk, 634055 Russia

M. Kopytov

Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: kma@ipc.tsc.ru
Tomsk, 634055 Russia

Bibliografia

  1. Scheffer B., van Koten M.A., Robschlager K.W., de Boks F.C. // Catalysis Today. 1998. V. 43. P. 217.
  2. Castañeda L.C., Muñoz J.A.D., Ancheyta J. // Catalysis Today. 2014. V. 220–222. P. 248.
  3. Пахманова О.А., Антонов С.В., Дементьев К.И., Герзелиев И.М., Хаджиев С.Н. // Нефтехимия. 2012. Т. 52. № 6. С. 432. [Petroleum Chemistry, 2012, vol. 52, no. 6, p. 401. https://doi.org/10.1134/S0965544112060096]
  4. Gonçalves M.L.A., Teixeira M.A.G., Pereira R.C.L., Mercury R.L.P., Matos J.R. // J. Thermal Analysis and Calorimetry. 2001. V. 64. P. 697.
  5. Trejo F., Rana M.S., Ancheyta J. // Catalysis Today. 2010. V. 150. P. 272.
  6. Юсевич А.И., Тимошкина М.А., Грушова Е.И. // Нефтехимия. 2010. Т. 50. № 3. С. 241. [Petroleum Chemistry, 2010, vol. 50, no. 3, p. 231. https://doi.org/10.1134/S0965544110030084]
  7. Kopytov M.A., Boyar S.V., Golovko A.K. // AIP Conference Proceedings. 2018. V. 2051. № 020131.
  8. Копытов М.А., Головко А.К. // Нефтехимия. 2017. Т. 57. № 1. С. 41. [Petroleum Chemistry, 2017, vol. 57, no. 1, p. 39. https://doi.org/10.1134/S0965544116090139]https://doi.org/10.7868/S0028242116060137
  9. Доронин В.П., Потапенко О.В., Липин П.В., Сорокина Т.П., Булучевская Л.А. // Нефтехимия. 2012. Т. 52. № 6. С. 422. [Petroleum Chemistry, 2012, vol. 52, no. 6, p. 392. https://doi.org/10.1134/S0965544112060059]
  10. Boyar S.V., Kopytov M.A. // AIP Conference. Proceedings. 2022. V. 2509. № 020031.
  11. Бойцова А.А., Байталов Ф., Строкин С.В. // Деловой журнал Neftegaz.ru. 2020. V. 99. № 3. P. 46.
  12. Тимошкина М.А., Юсевич А.И., Михаленок С.Г., Прокопчук Н.Р. // Нефтехимия. 2014. Т. 54. № 2. С. 113. [Petroleum Chemistry, 2014, vol. 54, no. 2, p. 111. https://doi.org/10.1134/S0965544114020121]https://doi.org/10.7868/S0028242114020129
  13. Opfermann J.R., Kaisersberger E., Flammersheim H.J. // Thermochimica Acta. 2002. V. 391. P. 119–127.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (82KB)
3.

Baixar (280KB)
4.

Baixar (257KB)
5.

Baixar (196KB)

Declaração de direitos autorais © С.В. Бояр, М.А. Копытов, 2023