Study of the influence of the composition on the crystalline structure, the optical properties and the lifetime of photogenerated current carriers in AgxCu1–xGaSe2 (0 ≤ x ≤ 1) solid solutions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this paper, a series of AgxCu1–xGaSe2 (0 ≤ x ≤ 1) solid solution powders were prepared by solid-phase synthesis. The single-phase tetragonal structure of the samples (space group I-42d) was determined by a combination of X-ray phase analysis and Raman spectroscopy. It is shown that their lattice parameters do not conform to the Vegard's law up to x ≈ 0.4. It is found that the width of the forbidden band of the samples also changes nonlinearly: first decreases and then increases. The study of the spectra of low-temperature luminescence and microwave photoconductivity decay has shown that for a series of samples with x from 0 to ≈0.4, and then at the section with x > 0.4, an increase in the lifetime of photogenerated current carriers in AgxCu1–xGaSe2 powders is characteristic. The observed phenomenon seems to be due to the replacement of deep traps for charge carriers, such as selenium vacancies, by smaller cationic vacancies.

About the authors

V. V. Rakitin

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, RAS

Email: gmw1@mail.ru
Russian Federation, Chernogolovka

M. V. Gapanovich

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, RAS; Moscow State University

Author for correspondence.
Email: gmw1@mail.ru
Russian Federation, Chernogolovka; Moscow

D. S. Lutsenko

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, RAS; Moscow State University

Email: gmw1@mail.ru
Russian Federation, Chernogolovka; Moscow

V. B. Nazarov

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, RAS

Email: gmw1@mail.ru
Russian Federation, Chernogolovka

A. V. Stanchik

State Scientific and Production Association, Scientific-Practical Materials Research Center of the National Academy of Sciences of Belarus

Email: gmw1@mail.ru
Belarus, Minsk

V. F. Gremenok

State Scientific and Production Association, Scientific-Practical Materials Research Center of the National Academy of Sciences of Belarus

Email: gmw1@mail.ru
Belarus, Minsk

A. V. Kobylyatskiy

State Scientific and Production Association, Scientific-Practical Materials Research Center of the National Academy of Sciences of Belarus

Email: gmw1@mail.ru
Belarus, Minsk

References

  1. Turner J.A. // Science. 2004. V. 305. P. 972.
  2. Barreto L., Makihira A., Riahi K. // Int. J. Hydrogen Energy. 2003. V. 28. P. 267.
  3. Chen Y., Feng X., Liu M. et. al. // Nanophotonics. 2016. V. 5. № 4. P. 524.
  4. Valderrama R.C., Sebastian P.J., Enriquez J.P. et al. // Sol. Energy Mater. Sol. Cells. 2005. V. 88. P. 145.
  5. Marsen B., Dorn S., Cole B. et al. // Mater. Res. Soc. Symp. Proc. 2007. V. 974:0974–CC09–05.
  6. Jacobsson T.J., Platzer-Björkman C., Edoff M. et al. // Int. J. Hydrogen Energy. 2013. V. 38. P. 15027.
  7. Moriya M., Minegishi T., Kumagai H. et al. // J. American Chemical Society. 2013. V. 135. № 10. P. 3733.
  8. Yokoyama D., Minegishi T., Maeda K. et al. // Electrochem. Commun. 2010. V. 12. P. 851.
  9. Zhang L., Minegishi T., Kubota J., Domen K. // Phys. Chem. Chem. Phys. 2014. V. 16. P. 6167.
  10. Huang D., Persson C., Ju Z. et al. // EPL: A letters journal exploring the frontiers of Physics. 2014. V. 105. № 3. P. 37007.
  11. Rabenok E.V., Gapanovich M.V. // High Energy Chemistry. 2023. V. 57. № 2. P. 174.
  12. Barman B., Handique K.C., Kalita P.K. // Materials Letters. 2024. V. 357. № 15. P. 135638.
  13. Ikeda S., Fujita W., Katsube R. et al. // Electrochimica Acta 2023. V. 454. P. 142384.
  14. Karaagac H., Parlak M. // Applied Surface Science. 2009. V. 255. P. 5999.
  15. Karaagac H., Parlak M. // Applied Surface Science. 2011. V. 257 P. 5731.
  16. Beck M.E., Weiss T., Fischer D. et al. // Thin Solid Films. 2000. V. 361. P. 130.
  17. Holleman A.F., Wiberg E., Wiberg N. // Lehrbuch der Anorganischen Chemie. Germany, Berlin: Walter de Gruyter, 1985. 508 p.
  18. Theodoropoulou S., Papadimitriou D., Doka S. et al. // Thin Solid Films. 2007. V. 515. P. 5904.
  19. Cui Y., Roy U.N., Bhattacharya P. et al. // Solid State Communications. 2010. V. 150. P. 1686.
  20. Chen S., Gong X.G., Wei S.–H. // Phys. Rev. B. 2007. V. 75. P. 205209.
  21. Nigge K.–M., Baumgartner F.P., Bucher E. // Solar Energy Materials and Solar Cells. 1996. V. 43. P. 335.
  22. Artus L., Bertrand Y. // Solid State Comm. 1987. V. 61. P. 733.
  23. Schon J.H., Baumgartner F.P., Arushanov E. et al. // J. Appl. Phys. 1996. V. 79. P. 6961.
  24. Schon J.H., Baumgartner F.P., Arushanov E. et al. // Cryst. Res. Technol. 1996. V. 31. P. 155.
  25. Schon J.H., Riazi-Nejad H., Kloc Ch. et al. // Journal of Luminescence. 1997. V. 72 – 74. P. 118.
  26. Weiss T., Birkholz M., Saad M. et al. // Journal of Crystal Growth. 1999. V. 198 / 199. P. 1190.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences