Quantum-chemical determination of electronic-vibrational characteristics of Nd/Sm/Eu/Gd: Y3Al5O12 structures in ceramics synthesized by laser sintering

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The spatial-structural models of clusters of rare-earth-doped aluminum-yttrium garnet−Nd/Sm/Eu/Gd:YAG−were optimized using the DFT/uB3PW91/SDD method to achieve minimum potential energy. The characteristic bond lengths, angles, charge values, as well as their changes upon substitution of one yttrium atom by Nd3+, Sm3+, Eu3+, Gd3+ ions were determined. The calculation of IR spectra and the correlation of absorption bands of calculated and recorded wave numbers for crystalline YAG and Nd/Sm/Eu/Gd: YAG nanoclusters were performed. The electronic spectrum for Nd/Sm/Eu:YAG models was calculated by the TD-SCF/gen/def2-SVP method. The energies of the levels were determined and the band gap was calculated.

Толық мәтін

Рұқсат жабық

Авторлар туралы

S. Plekhovich

National Research Lobachevsky State University of Nizhny Novgorod

Хат алмасуға жауапты Автор.
Email: plekhovich@ihps-nnov.ru
Ресей, Nizhny Novgorod

A. Plekhovich

G.G. Devyatykh Institute of High-Purity Substances Chemistry of the RAS

Email: plekhovich@ihps-nnov.ru
Ресей, Nizhny Novgorod

A. Kut’in

G.G. Devyatykh Institute of High-Purity Substances Chemistry of the RAS

Email: plekhovich@ihps-nnov.ru
Ресей, Nizhny Novgorod

A. Budruev

National Research Lobachevsky State University of Nizhny Novgorod

Email: plekhovich@ihps-nnov.ru
Ресей, Nizhny Novgorod

Әдебиет тізімі

  1. Veiko V.P., Kieu Q.K. // Proceedings of SPIE. 2004. V. 5399. P.11.
  2. Пермякова И.Е. // Изв. РАН. Сер. физ. 2018. Т. 82. № 9. С. 1197 [Permyakova I.E. // Bull. Russ. Acad. Sci. Phys. 2018. V. 78. № 9. P. 1086].
  3. Lotarev S.V., Lipatiev A.S., Lipateva T.O., Lopatina E.V., Sigaev V.N. // Crystals. 2021. V. 11. P. 193. https://doi.org/10.3390/cryst11020193
  4. Veiko V.P., Kostuk G.K., Niconorov N.V., Yakovlev E.B. // Izv. AN SSSR. Ser. fiz. V. 72. № 2. P. 184.
  5. Lysenko S.A., Yuryshev N.N., Vagin N.P. // Phys. Atomic Nuclei. 2022. V. 85. № 10. P. 1773.
  6. Vagin N.P., Lysenko S.A., Yuryshev N.N. // J. Phys.: Conference Series. 2021. V. 2036. № 1. P. 012036.
  7. Peixin Z., Genyu C., Shaoxiang C., Mingquan Li // J. of Mater. Res. and Techn. 2022. V. 20. P. 2309. https://doi.org/10.1016/j.jmrt.2022.07.162
  8. Changhwan Kim, Ik-Bu Sohn // Opt. Mater. Expr. 2014. V. 4. № 11. P. 2233. https://doi.org/10.1016/j.jmrt.2022.07.162
  9. Степаненко С.А. Фотонный компьютер: структура и алгоритмы, оценки параметров // Фотоника. 2017. № 7. C. 67. https://doi.org/10.22184/1993-7296.2017.67.7.72.83
  10. Полуэктов А.О. Оптический логический элемент / Патент РФ 20751061 от 10.03.1997.
  11. Чувылкин Н.Д., Жидомиров Г.М. // Ж. физ. химии. 1981. T. 55. C.1.
  12. Родунер Э. Размерные эффекты в наноматериалах М.: Техносфера. 2010. 352 c. [Roduner E. Size Effects in Nanomaterials. Moscow: Tekhnosfera; 2010. (In Russian)].
  13. Timoshenko A.D., Matvienko O.O., Doroshenko A.G., Parkhomenko S.V., Vorona I.O., Kryzhanovska O.S. et al. // Ceramics Int. 2023. V. 49. № 5. P. 7524.
  14. Kutyin A.M., Rostokina E.Ye., Gavrishchuk E.M., Drobotenko V.V., Plekhovich A.D., Yunin P.A. // Ceram. Int. 2015. V. 41. P. 10616. https://doi.org/10.1016/j.ceramint.2015.04.161
  15. Плехович А.Д., Кутьин А.М., Ростокина Е.Е., Комшина М.Е., Балуева К.В., Шумовская К.Ф. и др. // Неорг. Мат. 2024. № 5.
  16. Jenkins R., Snyder R.L. Introduction to X-ray Powder Diffractometry: John Wiley & Sons Inc., 1996. P. 89. https://doi.org/10.5860/choice.34-2807
  17. Plekhovich S.D., Plekhovich A.D., Kut’in A.M., Rostokina E.E., Budruev A.V., Biryukova T.Yu. // High Energy Chemistry. 2024. V. 58. № 4. P. 362.
  18. Data retrieved from the Materials Project for Y3Al5O12 (mp-3050) from database version v2022.10.28.
  19. Frisch M.J., Trucks G.W., Schlegel H.B. et.al. // Gaussian 03 Gaussian, Inc., Wallingford, CT. 2003.
  20. Плехович А.Д., Кутьин А.М., Балуева К.В., Ростокина Е.Е., Комшина М.Е., Шумовская К.Ф. // Ж. Неорг. Хим. 2024. Т. 69. № 8. С. 1155.
  21. Kuznetsov V., Smit K., Stepanov D. // Report number: DST-Group-TR-3697. Defence Science and Technology Group (DST).
  22. Shi C., Hua W., Charles L., Melcher, Yiquan Wu // Opt. mater. Expr. 2013. V. 3 № 12. P. 1. https://doi.org/10.1364/OME.3.002022

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Crystalline fragment of Y3Al12O29 (a) and cluster of nanocrystal Y7Al9O26, where X: Y, Nd, Sm, Eu, Gd (b).

Жүктеу (175KB)
3. Fig. 2. IR spectra (a) – calculated by the DFT/uB3LYP/def2-SVP method (scale factor = 0.98 and FWHM = 12 cm–1) and (b) – recorded IR spectrum of YAG obtained by the SLS method.

Жүктеу (150KB)
4. Fig. 3. Image of the central atom and its environment in accordance with the calculated models corresponding to atoms X = Y, Nd, Sm, Eu, Gd.

Жүктеу (49KB)
5. Fig. 4. IR spectra of RY6Al9O26 clusters calculated by the DFT/uB3PW91/SDD method, where R = Gd (1), Eu (2), Sm (3), Nd (4). Scale factor – 0.93 and FWHM = 12 cm–1. Shift along the Abs axis – 25, 50%.

Жүктеу (223KB)
6. Fig. 5. Electronic spectrum of Nd:YAG nanocluster.

Жүктеу (134KB)
7. Fig. 6. Electronic spectrum of Sm:YAG nanocluster.

Жүктеу (159KB)
8. Fig. 7. Electronic spectrum of the Eu:YAG nanocluster.

Жүктеу (157KB)

© Russian Academy of Sciences, 2025