Quantum-chemical modeling of dispersed systems with the yttrium aluminum garnet base

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Laser material Y3Al5O12 (YAG), originally known in the form of a single-crystal, has been distributed and widely commercialized in the form of optical ceramics. The desire to expand the functionality of materials made of nanocrystals due to the size effect actualizes the study of the influence of their structure on the optical (vibrational and electronic) and other properties of new promising materials with the YAG base including glass ceramics. In this work, models of crystalline alumina-iodine garnet fragments have been calculated by DFT/uPBEPBE/SDD, DFT/uPBEPBE/lanl2DZ, and DFT/uB3PW91/SDD methods. The IR spectra were calculated by DFT/uPBEPBE/lanl2DZ method and the absorption bands of the calculated wave numbers were correlated with the measured ones. The electronic absorption spectrum and energy levels were calculated by the DFT/RB3PW91/SDD method.

Texto integral

Acesso é fechado

Sobre autores

C. Plekhovich

Lobachevsky State University

Autor responsável pela correspondência
Email: plekhovich@ihps-nnov.ru
Rússia, Nizhny Novgorod

A. Plekhovich

Institute of Chemistry of High-Purity Substances of the Russian Academy of Sciences

Email: plekhovich@ihps-nnov.ru
Rússia, Nizhny Novgorod

A. Kutiin

Institute of Chemistry of High-Purity Substances of the Russian Academy of Sciences

Email: plekhovich@ihps-nnov.ru
Rússia, Nizhny Novgorod

E. Rostokina

Institute of Chemistry of High-Purity Substances of the Russian Academy of Sciences

Email: plekhovich@ihps-nnov.ru
Rússia, Nizhny Novgorod

A. Budruev

Lobachevsky State University

Email: plekhovich@ihps-nnov.ru
Rússia, Nizhny Novgorod

T. Biryukova

Lobachevsky State University

Email: plekhovich@ihps-nnov.ru
Rússia, Nizhny Novgorod

Bibliografia

  1. Osipov V.V., Shitov V.A., Maksimov R.N., Solomonov V.I., Lukyashin K.E., Orlov A.N. // Photonics. 2018. V. 12. № 3. P. 318–334.
  2. Ikesue A., Aung Y.L., Taira T., Kamimura T., Yoshida K., Messing. G.L. // Annu. Rev. Mater. Res. 2006. V. 36. P. 397.
  3. Lukowiak A., Wiglusz R.J., Maczka M., Gluchowski P., Strek W. // Chemical Physics Letters. 2010. V. 494. № 4–6. P. 279–283. https://doi.org/10.1016/j.cplett.2010.06.033
  4. Solomonov V.I., Osipov V.V., Shitov V.A., Lukyashin K.E., Bubnova A.S. // Optics and Spectroscopy. 2020. V. 128, Iss. 1. P. 5–9. https://doi.org/10.21883/OS.2020.01.48831.117-19
  5. Volzhenskaya L.G., Zorenko Y.V., Patsagan N.I., Pashkovsky M.V. // Opt. and Spectrum. 1987. V. 63. № 1. P. 135.
  6. Zorenko Y.V., Pashkovsky M.V., Batenchuk M.M., Limarenko L.N., Nazar I.V. // Opt. and Spectrum. 1996. V. 80. No. 5. P. 776.
  7. Balabanov S.S., Gavrishchuk E.M., Rostokina E.Ye., Plekhovich A.D., Kuryakov V.N., Amarantov S.V., et al. // Ceramics International. 2016. V. 42. P. 17571–17580. https://doi.org/10.1016/j.ceramint.2016.08.071
  8. Bangjun L., Ke Gai, Qian W., Tong Z. // Ceram. Int. 2023. V. 49. № 19. P. 32318–32323. https://doi.org/10.1016/j.ceramint.2023.07.098
  9. Balabanov S.S., Gavrishchuk E.M., Drobotenko V.V., Plekhovich A.D., Rostokina E.E. // Neorg. Mater. 2014. V. 50. № 10. P. 1114–1118. https://doi.org/10.7868/S0002337X14100030
  10. Frisch M.J., Trucks G.W., Schlegel H.B., et.al. // Gaussian 03 Gaussian, Inc., Wallingford, CT. 2003.
  11. Data retrieved from the Materials Project for Y3Al5O12 (mp-3050) from database version v2022.10.28. https://doi.org/10.17188/1204905
  12. Dobrzycki Ł., Bulska E., Pawlak D.A., Frukacz Z., Wozniak K. // Inorg. Chem. 2004. V. 43. P. 7656–7664. https://doi.org/10.1021/ic049920z
  13. Roose N.S., Anisimov N.A. // Opt. and Spectrum. 1975. V. 38. № 3. P. 627.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Structure of the yttrium aluminum garnet molecule: a – in accordance with work [11, 12], b – calculated by the DFT/uPBEPBE/SDD method.

Baixar (384KB)
3. Table 1.1

Baixar (54KB)
4. Table 1.2

Baixar (47KB)
5. Fig. 2. Calculated IR spectrum of yttrium aluminum garnet of composition Y6Al15O15 (scale factor – 0.91 and FWHM = 6 cm-1).

Baixar (406KB)
6. Fig. 3. (a) Calculated IR spectrum (composition Y7Al9O26: scale factor – 1.0 and FWHM = 12 cm-1), (b) recorded IR spectrum of yttrium aluminum garnet.

Baixar (565KB)
7. Table 2.1

Baixar (109KB)
8. Table 2.2

Baixar (68KB)
9. Table 2.3

Baixar (71KB)
10. Table 2.4

Baixar (106KB)
11. Fig. 4. Electronic spectrum of the Y7Al9O26 model calculated by the DFT/RB3PW91/SDD method (1 – singlet state, 2 – triplet state).

Baixar (344KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024