Microfluidic-assisted synthesis of hybrid calcium carbonate/silver microparticles

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The development of advanced methods for the synthesis of nano- and microparticles for biomedical applications is of considerable interest. A method for the synthesis of submicron silver-shelled calcium carbonate particles using a microfluidic chip designed to provide control over particle formation is proposed. Precise control of reaction parameters enables the formation of silver shell and calcium carbonate particles in a controlled manner. The distribution of pores in the hybrid particles was analyzed using small-angle X-ray scattering, which provided insight into the complex structure of the pores. The results provide information on particle morphology and may facilitate the development of new calcium carbonate-based materials for various applications.

Texto integral

Acesso é fechado

Sobre autores

А. Ermakov

Institute of Molecular Theranostics, First Moscow State Medical University (Sechenov University)

Email: trushina.d@mail.ru
Rússia, Moscow

S. Chapek

Southern Federal University

Email: trushina.d@mail.ru

The Smart Materials Research Institute

Rússia, Rostov-on-Don

Е. Lengert

Institute of Molecular Theranostics, First Moscow State Medical University (Sechenov University)

Email: trushina.d@mail.ru
Rússia, Moscow

P. Konarev

NRC “Kurchatov Institute”

Email: trushina.d@mail.ru

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics

Rússia, Moscow

V. Volkov

NRC “Kurchatov Institute”

Email: trushina.d@mail.ru

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics

Rússia, Moscow

M. Soldatov

Southern Federal University

Email: trushina.d@mail.ru

The Smart Materials Research Institute

Rússia, Rostov-on-Don

D. Trushina

Institute of Molecular Theranostics, First Moscow State Medical University (Sechenov University); NRC “Kurchatov Institute”

Autor responsável pela correspondência
Email: trushina.d@mail.ru

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics

Rússia, Moscow; Moscow

Bibliografia

  1. Yang D., Gao K., Bai Y. et al. // Int. J. Biol. Macromol. 2021. V. 182. P. 639. https://doi.org/10.1016/j.ijbiomac.2021.04.057
  2. Verkhovskii R.A., Ivanov A.N., Lengert E. et al. // Pharmaceutics. 2023. V. 15 (5). P. 1566. https://doi.org/10.3390/pharmaceutics15051566
  3. Song W., Zhang Y., Yu D.-G. et al. // Biomacromolecules. 2021. V. 22 (2). P. 732. https://doi.org/10.1021/acs.biomac.0c01520
  4. Lengert E.V., Trushina D.B., Soldatov M., Ermakov A.V. // Pharmaceutics. 2022. V. 14 (1). P. 139. https://doi.org/10.3390/pharmaceutics14010139
  5. Huang Y., Cao L., Parakhonskiy B.V., Skirtach A.G. // Pharmaceutics. 2022. V. 14 (5). P. 909. https://doi.org/10.3390/pharmaceutics14050909
  6. Trucillo P. // Processes. 2021. V. 9 (3). P. 470. https://doi.org/10.3390/pr9030470
  7. Zhao X., Wu D., Ma X. et al. // Biomed. Pharmacother. 2020. V. 128. P. 110237. https://doi.org/10.1016/j.biopha.2020.110237
  8. Finbloom J.A., Sousa F., Stevens M.M., Desai T.A. // Adv. Drug Deliv. Rev. 2020. V. 167. P. 89. https://doi.org/10.1016/j.addr.2020.06.007
  9. Turiel-Fernández D., Gutiérrez-Romero L., Corte-Rodriguez M. et al. // Anal. Chim. Acta. 2021. V. 1159. P. 338356. https://doi.org/10.1016/j.aca.2021.338356
  10. Tu J., Yu A.C.H. // BME Front. 2022. V. 2022. https://doi.org/10.34133/2022/9807347
  11. Novoselova M.V., German S.V., Abakumova T.O. et al. // Colloids Surf. B. 2021. V. 200. P. 111576. https://doi.org/10.1016/j.colsurfb.2021.111576
  12. Kung C.-T., Gao H., Lee C.-Y. et al. // Chem. Eng. J. 2020. V. 399. P. 125748. https://doi.org/10.1016/j.cej.2020.125748
  13. Ma Z., Li B., Peng J., Gao D. // Pharmaceutics. 2022. V. 14 (2). P. 434. https://doi.org/10.3390/pharmaceutics14020434
  14. Liu Y., Yang G., Hui Y. et al. // Small. 2022. V. 18 (36). https://doi.org/10.1002/smll.202106580
  15. Huang K.S., Yang C.H., Wang Y.C. et al. // Pharmaceutics. 2019. V. 11 (5). P. 212. https://doi.org/10.3390/pharmaceutics11050212
  16. Huang Y., Liu C., Feng Q. et al. // Nanoscale Horizons. 2023. V. 8 (12). P. 1610. https://doi.org/10.1039/D3NH00217A
  17. Hao N., Nie Y., Zhang J.X.J. // Biomater. Sci. 2019. V. 7 (6). P. 2218. https://doi.org/10.1039/C9BM00238C
  18. Svenskaya Y., Pallaeva T. // Pharmaceutics. 2023. V. 15 (11). P. 2574. https://doi.org/10.3390/pharmaceutics15112574
  19. Maleki Dizaj S., Sharifi S., Ahmadian E. et al. // Expert Opin. Drug Deliv. 2019. V. 16 (4). P. 331. https://doi.org/10.1080/17425247.2019.1587408
  20. Zhao P., Tian Y., You J. et al. // Bioengineering. 2022. V. 9 (11). P. 691. https://doi.org/10.3390/bioengineering9110691
  21. Westrøm S., Bønsdorff T.B., Bruland Ø.S., Larsen R.H. // Transl. Oncol. 2018. V. 11 (2). P. 259. https://doi.org/10.1016/j.tranon.2017.12.011
  22. Li R.G., Lindland K., Bønsdorff T.B. et al. // Materials (Basel). 2021. V. 14 (23). P. 7130. https://doi.org/10.3390/ma14237130
  23. Feoktistova N., Rose J., Prokopović V.Z. et al. // Langmuir. 2016. V. 32 (17). P. 4229. https://doi.org/10.1021/acs.langmuir.6b00717
  24. Svenskaya Y.I., Lengert E.V., Tarakanchikova Y.V. et al. // J. Mater. Chem. B. 2023. V. 11 (17). P. 3860. https://doi.org/10.1039/D2TB02779H
  25. Ferreira A.M., Vikulina A.S., Volodkin D. // J. Control. Release. 2020. V. 328. P. 470. https://doi.org/10.1016/j.jconrel.2020.08.061
  26. Lengert E.V., Savkina A.A., Ermakov A.V. et al. // Mater. Sci. Eng. C. 2021. V. 126. P. 112144. https://doi.org/10.1016/j.msec.2021.112144
  27. Kiryukhin M.V., Lim S.H., Lau H.H. et al. // J. Colloid Interface Sci. 2021. V. 594. P. 362. https://doi.org/10.1016/j.jcis.2021.03.059
  28. Vikulina A.S., Feoktistova N.A., Balabushevich N.G. et al. // Phys. Chem. Chem. Phys. 2018. V. 20 (13). P. 8822. https://doi.org/10.1039/C7CP07836F
  29. Jenjob R., Phakkeeree T., Crespy D. // Biomater. Sci. 2020. V. 8 (10). P. 2756. https://doi.org/10.1039/C9BM01872G
  30. De Geest B.G., De Koker S., Sukhorukov G.B. et al. // Soft Matter. 2009. V. 5 (2). P. 282. https://doi.org/10.1039/B808262F
  31. Garcia L., Kerns G., O’Reilley K. et al. // Micromachines. 2021. V. 13 (1). P. 28. https://doi.org/10.3390/mi13010028
  32. Ermakov A.V., Chapek S.V., Lengert E.V. et al. // Micromachines. 2023. V. 15 (1). P. 16. https://doi.org/10.3390/mi15010016
  33. Shapovalov V.V., Chapek S.V., Tereshchenko A.A. et al. // Micro Nano Eng. 2023. V. 20. P. 100224. https://doi.org/10.1016/j.mne.2023.100224
  34. Sukhorukov G.B., Volodkin D.V., Günther A.M. et al. // J. Mater. Chem. 2004. V. 14 (14). P. 2073. https://doi.org/10.1039/B402617A
  35. Yashina A., Meldrum F., DeMello A. // Biomicrofluidics. 2012. V. 6 (2). P. 022001. https://doi.org/10.1063/1.3683162
  36. Witt H., Yandrapalli N., Sari M. et al. // Langmuir. 2020. V. 36 (44). P. 13244. https://doi.org/10.1021/acs.langmuir.0c02175
  37. Tan P., Li H., Wang J., Gopinath S.C.B. // Biotechnol. Appl. Biochem. 2020. P. bab.2045. https://doi.org/10.1002/bab.2045
  38. Horne J., De Bleye C., Lebrun P. et al. // J. Pharm. Biomed. Anal. 2023. V. 233. P. 115475. https://doi.org/10.1016/j.jpba.2023.115475
  39. Marchenko I., Borodina T., Trushina D. et al.// J. Microencapsul. 2018. V. 35 (7–8). P. 657. https://doi.org/10.1080/02652048.2019.1571642
  40. Feigin L.A., Svergun D.I. Structure Analysis by Small-Angle X-Ray and Neutron Scattering / Ed. Taylor G.W. NY: Springer, 1987. https://doi.org/10.1007/978-1-4757-6624-0
  41. Bukreeva T.V., Marchenko I.V., Parakhonskiy B.V., Grigor’ev Y.V. // Colloid J. 2009. V. 71 (5). P. 596. https://doi.org/10.1134/S1061933X09050032
  42. Mikheev A.V., Pallaeva T.N., Burmistrov I.A. et al. // Cryst. Growth Des. 2023. V. 23 (1). P. 96. https://doi.org/10.1021/acs.cgd.2c00796

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Topology of the microfluidic device (1 – transport phase inlet, 2 – reagent 1, 3 – reagent 2, 4 – reaction zone, 5 – droplet storage chamber, 6 – outlet, 7 – general view).

Baixar (140KB)
3. Fig. 2. Micrograph of the plane of the microfluidic chip during the formation of CaCl2/Na2CO3 droplets in castor oil with the addition of 0.1 M AgNO3 and excess NH4OH, followed by washing with 5% glucose (C6H12O6).

Baixar (362KB)
4. Fig. 3. SEM images of CaCO3 particles synthesized in the bulk phase using ethylene glycol (a) and CaCO3@Ag hybrid particles synthesized by the droplet method using a microfluidic device, in standard mode (b) and in combination with back-electron scattering mode (c).

Baixar (200KB)
5. Fig. 4. DLS results for the distribution of CaCO3 particles synthesized in the bulk phase using ethylene glycol and CaCO3@Ag hybrid particles synthesized by the droplet method using a microfluidic device.

Baixar (65KB)
6. Fig. 5. Experimental SAXS curves (a) and distribution functions Dv(r) (b) for CaCO3 synthesized in the bulk phase and inside the microfluidic chip during the formation of Ag NPs.

Baixar (112KB)
7. Fig. 6. Antibacterial activity of hybrid vaterite CaCO3@Ag particles according to the standard minimum inhibitory concentration method (a) and the modified method: b – control, c – particles at a concentration of 10 particles per cell; as well as the viability of bacterial cells depending on the number of hybrid CaCO3@Ag particles added to the culture medium (d).

Baixar (318KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024