Crystals of 4,7-bis(2,5-dimethyl-[1,1'-biphenyl]-4-yl)benzothiadiazole and Its Derivative with Terminal n-Hexyl Substitutes: Growth, Structure, Thermal and Absorption-Fluorescent Properties

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This study presents an investigation into the crystallization and absorptive-fluorescent properties of linear conjugated molecules derived from 2,1,3-benzothiadiazole, specifically 4,7-bis(2,5-dimethyl-[1,1'-biphenyl]-4-yl)benzothiadiazole (Ph-Xy-BTD) and 4,7-bis(4'-hexyl-2,5-dimethyl-[1,1'-biphenyl]-4-yl)benzothiadiazole (Hex-Ph-Xy-BTD). The synthesis of a new derivative of Hex-Ph-Xy-BTD is described. It was found that the presence of terminal n-hexyl substituents in Hex-Ph-Xy-BTD leads to a lower melting point, increased solubility and has a positive effect on crystallization compared to Ph-Xy-BTD. Single crystals of Hex-Ph-Xy-BTD were grown from hexane solution, and their structure was elucidated using single-crystal X-ray diffraction, confirming a monoclinic system (space group P21/c, Z = 4). Absorption and fluorescence spectra were obtained and analyzed for solutions in tetrahydrofuran as well as for the crystals of Ph-Xy-BTD and Hex-Ph-Xy-BTD, alongside investigations of quantum yield and fluorescence lifetime.

Full Text

Restricted Access

About the authors

V. A. Postnikov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Author for correspondence.
Email: postva@yandex.ru
Russian Federation, Moscow

N. I. Sorokina

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: postva@yandex.ru
Russian Federation, Moscow

G. A. Yurasik

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: postva@yandex.ru
Russian Federation, Moscow

Т. А. Сорокин

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: postva@yandex.ru
Russian Federation, Moscow

A. A. Kylishov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: postva@yandex.ru
Russian Federation, Moscow

M. S. Lyasnikova

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: postva@yandex.ru
Russian Federation, Moscow

V. V. Popova

Enikolopov Institute of Synthetic Polymer Materials of Russian Academy of Sciences

Email: postva@yandex.ru
Russian Federation, Moscow

E. A. Svidchenko

Enikolopov Institute of Synthetic Polymer Materials of Russian Academy of Sciences

Email: postva@yandex.ru
Russian Federation, Moscow

N. M. Surin

Enikolopov Institute of Synthetic Polymer Materials of Russian Academy of Sciences

Email: postva@yandex.ru
Russian Federation, Moscow

O. V. Borshchev

Enikolopov Institute of Synthetic Polymer Materials of Russian Academy of Sciences

Email: borshchev@ispm.ru
Russian Federation, Moscow

References

  1. Skorotetcky M.S., Krivtsova E.D., Borshchev O.V. et al. // Dye. Pigment. 2018. V. 155. P. 284. https://doi.org/10.1016/j.dyepig.2018.03.043
  2. Taylor D., Malcomson T., Zhakeyev A. et al. // Org. Chem. Front. 2022. V. 9. P. 5473. https://doi.org/10.1039/d2qo01316a
  3. Kostyuchenko A.S., Uliankin E.B., Stasyuk A.J. et al. // J. Org. Chem. 2023. V. 88. P. 5875. https://doi.org/10.1021/acs.joc.3c00286
  4. Kono T., Kumaki D., Nishida J.I. // Chem. Mater. 2007. V. 19. P. 1218. https://doi.org/10.1021/cm062889+
  5. Bei Q., Zhang B., Wang K. et al. // Chinese Chem. Lett. 2024. V. 35. P. 108438. https://doi.org/10.1016/j.cclet.2023.108438
  6. Bhagyanath P.K., Angela M., Asit H. // Mater. Adv. 2024. V. 5. P. 3323. https://doi.org/10.1039/d4ma00068d
  7. Postnikov V.A., Sorokina N.I., Kulishov A.A. et al. // ACS Omega. 2024. V. 9. P. 14932. https://doi.org/10.1021/acsomega.3c08543
  8. Surin N.M., Svidchenko E.A., Skorotetskii M.S. et al. // Russ. J. Phys. Chem. A. 2024. V. 98. P. 448. https://doi.org/10.1134/S0036024424030294
  9. Постников В.А., Юрасик Г.А., Кулишов А.А. и др. // Кристаллография. 2021. Т. 66. С. 967. https://doi.org/10.31857/s0023476121060266
  10. Sonntag M., Strohriegl P. // Tetrahedron Lett. 2006. V. 47. P. 8313. https://doi.org/10.1016/j.tetlet.2006.09.089
  11. Постников В.А., Сорокина Н.И., Кулишов А.А. и др. // Кристаллография. 2023. Т. 68. С. 120. https://doi.org/10.31857/S0023476123010228
  12. Postnikov V.A., Sorokina N.I., Kulishov A.A. et al. // Acta Cryst. B. 2019. V. 75. P. 1076. https://doi.org/10.1107/S2052520619012484
  13. Rigaku Oxford Diffraction. CrysAlisPro Software System: 1.171.39.46. Rigaku Corporation, Oxford, UK, 2018.
  14. Petrícek V., Dušek M., Palatinus L. // Z. Kristallogr. 2014. V. 229. P. 345. https://doi.org/10.1515/zkri-2014-1737
  15. Palatinus L. // Acta Cryst. A. 2004. V. 60. P. 604. https://doi.org/10.1107/S0108767304022433
  16. Demas J.N., Crosby G.A. // J. Phys. Chem. 1971. V. 75. P. 991. https://doi.org/10.1021/j100678a001
  17. Berlman I.B. Handbook of florescence spectra of Aromatic Molecules. 2d ed. N.Y.; London: Academic Press, 1971. 473 p.
  18. Уббелоде А.Р. Расплавленное состояние вещества. М.: Мир, 1969. 420 с.
  19. Kaminsky W. // J. Appl. Cryst. 2007. V. 40. P. 382. https://doi.org/10.1107/S0021889807003986

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Rice. 1. Synthesis scheme for Hex-Ph-Xy-BTD.

Download (57KB)
3. Fig. 2. DSC curves for Hex-Ph-Xy-BTD (1) and Ph-Xy-BTD (2).

Download (72KB)
4. Fig. 3. Ph-Xy-BTD crystals: on graph paper (a) and fluorescent image of a crystalline aggregate (b).

Download (337KB)
5. Fig. 4. Hex-Ph-Xy-BTD crystals: under UV illumination (a), confocal image of a faceted crystal (b) and its images in fluorescence mode (c) and in differential interference contrast mode (d).

Download (400KB)
6. Fig. 5. Conformation of the Hex-Ph-Xy-BTD molecule in the ORTEP representation with indication of torsion angles between conjugated groups (thermal ellipsoids with a probability level of 50%).

Download (152KB)
7. Fig. 6. Structure of Hex-Ph-Xy-BTD crystals: projection of the structure onto the (010) plane (a), projection of molecules in adjacent closest rows onto the (001) plane with the shortest H H and C-H π contacts indicated (b), diagram of the shortest contacts between nearest neighbors (c).

Download (399KB)
8. Fig. 7. Element of a crystalline monolayer in the orientation of the (100) plane (a) and software reconstruction of the Hex-Ph-Xy-BTD crystal habit (b).

Download (224KB)
9. Fig. 8. X-ray powder diffraction patterns for Ph-Xy-BTD (1) and Hex-Ph-Xy-BTD (2).

Download (84KB)
10. Fig. 9. Normalized absorption and fluorescence spectra of Ph-Xy-BTD (a) and Hex-Ph-Xy-BTD (b) in THF solution and in a thin polycrystalline film (without reabsorption). Selection of the absorption band of fluorescence centers (band I) in a thin polycrystalline film. Excitation was carried out in the long-wave absorption maximum.

Download (325KB)
11. Fig. 10. Normalized absorption and fluorescence spectra of Ph-Xy-BTD (a) and Hex-Ph-Xy-BTD (b) of thin (1) and bulk (2) crystals. Excitation was carried out at the long-wave absorption maximum.

Download (265KB)

Copyright (c) 2024 Russian Academy of Sciences