Effect of different gaseous mediums in the process of microwave pyrolysis carbonization of cellulose on the properties of the obtained activated carbon

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A comparative study of the characteristics of high-molecular organic matter (cotton lint) subjected to pyrolytic carbonisation under conditions of high-intensity microwave radiation in various gaseous media (N2, CO2, Ar) has been conducted. The methods employed included the determination of adsorption activity through the use of a methylene blue indicator, X-ray fluorescence analysis, transmission electron microscopy with microanalysis, and X-ray phase analysis. Electrodes derived from carbon materials produced through microwave carbonisation with varying gases were constructed, and symmetric cells were assembled in accordance with the two-electrode configuration. The electrochemical properties were investigated using cyclic voltammetry and galvanostatic charge-discharge methods. The results demonstrated that the materials obtained using a CO₂ gaseous medium exhibited the most optimal characteristics.

Texto integral

Acesso é fechado

Sobre autores

I. Dyachkova

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute

Autor responsável pela correspondência
Email: sig74@mail.ru
Rússia, Moscow

D. Zolotov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute

Email: sig74@mail.ru
Rússia, Moscow

A. Kumskov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute

Email: sig74@mail.ru
Rússia, Moscow

I. Volchkov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute

Email: sig74@mail.ru
Rússia, Moscow

E. Matveev

FSBSI “Research Institute of Advanced Materials and Technologies”

Email: sig74@mail.ru
Rússia, Moscow

V. Berestov

FSBSI “Research Institute of Advanced Materials and Technologies”

Email: sig74@mail.ru
Rússia, Moscow

V. Asadchikov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute

Email: sig74@mail.ru
Rússia, Moscow

Bibliografia

  1. Савельева Ю.Р., Кряжов А.Н., Богомолов М.С. и др. // Химия растительного сырья. 2003. № 4. С. 61.
  2. Yakout S., El-Deen G.S. // Arab. J. Chem. 2016. V. 9. P. 1155. https://doi.org/10.1016/j.arabjc.2011.12.002
  3. Kosheleva R.I., Mitropoulos A.C., Kyzas G.Z. // Environ. Chem. Lett. 2019. V. 17. P. 429. https://doi.org/10.1007/s10311-018-0817-5
  4. Yahya M.A., Al-Qodah Z., Ngah C.W.Z. // Renew. Sust. Energ. Rev. 2015. V. 46. P. 218. https://doi.org/10.1016/j.rser.2015.02.051
  5. Асадчиков В.Е., Дьячкова И.Г., Золотов Д.А. и др. // Кристаллография. 2022. Т. 67. № 4. С. 597. https://doi.org/10.31857/S002347612204004X
  6. Дьячкова И.Г., Золотов Д.А., Кумсков А.С. и др. // Успехи физ. наук. 2023. T. 193. № 12. C. 1325. https://doi.org/10.3367/UFNr.2023.02.039323
  7. Villota E.M., Lei H., Qian M. et al. // ACS Sustainable Chem. Eng. 2018. V. 6. № 1. P. 1318. https://doi.org/10.1021/acssuschemeng.7b03669
  8. Gopinath A., Kadirvelu K. // Environ. Chem. Lett. 2018. V. 16. P. 1137. https://doi.org/10.1007/s10311-018-0740-9
  9. ГОСТ 4453-74 “Уголь активный осветляющий древесный порошкообразный: технические условия”: Государственный стандарт Союза ССР: дата введения 01.01.1976. М.: Издательство стандартов, 1993. 21 с.
  10. Асадчиков В.Е., Бузмаков А.В., Дымшиц Ю.М. и др. Установка для топо-томографических исследований образцов. Пат. № 2674584 (Россия). 2018.
  11. Gates-Rector S., Blanton T. // Powder Diffr. 2019. V. 34. № 4. P. 352. https://doi.org/10.1017/S0885715619000812
  12. Ardizzone S., Fregonara G., Trasatti S. // Electrochim. Acta. 1990. V. 35. № 1. P. 263. https://doi.org/10.1016/0013-4686(90)85068-X
  13. Bartelmess J., Giordani S. // Beilstein J. Nanotechnol 2014. V. 5. № 1. P. 1980. https://doi.org/10.3762/bjnano.5.207
  14. Zeiger M., Jäckel N., Mochalin V.N., Presser V. // J. Mater. Chem. A. 2016. V. 4. № 9. P. 3172. https://doi.org/10.1039/c5ta08295a
  15. Дьячкова И.Г., Золотов Д.А., Кумсков А.С. и др. // ЖТФ. 2024. T. 94. № 6. C. 871. https://doi.org/10.61011/JTF.2024.06.58128.266-23
  16. Trucano P., Chen R. // Nature. 1975. V. 258. P. 136. https://doi.org/10.1038/258136a0
  17. Kratschmer W., Lamb L., Fostiropoulos K., Huffman D. // Nature. 1990. V. 347. P. 354. https://doi.org/10.1038/347354a0
  18. Rao G.N., Sastry V.S., Premila M. et al. // Powder Diffr. 1996. V. 11. № 1. P. 5. https://doi.org/10.1017/S0885715600008782
  19. Самонин В.В., Никонова В.Ю., Ким А.Н., Грун Н.А. // Изв. СПбГТИ (ТУ). 2010. № 8. С. 77.
  20. Березкин В.И., Викторовский И.В., Вуль А.Я. и др. // Физика и техника полупроводников. 2003. Т. 37. № 7. С. 802.
  21. Fayos J. // J. Solid State Chem. 1999. V. 148. № 2. P. 278. https://doi.org/10.1006/jssc.1999.8448
  22. Correia S.F., Fu L., Dias L.M. et al. // Nanoscale Adv. 2023. V. 5. № 13. P. 3428. https://doi.org/10.1039/d3na00136a

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. TEM image of a sample carbonized in a CO2 environment: a – general view of a particle with inclusions, area of ​​elemental mapping (Fig. 2a), b – amorphous particle with high magnification, c – carbon onion-shaped (fullerene-like) particles, d – multi-walled carbon nanotubes.

Baixar (978KB)
3. Fig. 2. Element distribution map (a) and energy-dispersive X-ray spectrum (b) of a sample carbonized in a CO2 environment.

Baixar (164KB)
4. Fig. 3. Bright-field STEM image of a sample carbonized in an N2 environment: a – general view of a particle with inclusions, area of ​​elemental mapping (Fig. 4a), b – general view of nano-onions, c – onion-like structure of carbon (high resolution).

Baixar (404KB)
5. Fig. 4. Element distribution map (a) and energy-dispersive X-ray spectrum (b) of a sample carbonized in an N2 environment.

Baixar (147KB)
6. Fig. 5. TEM image of a sample carbonized in an Ar environment: a – general view of a particle with inclusions, area of ​​elemental mapping (Fig. 6a), b – amorphous particle with high resolution.

Baixar (500KB)
7. Fig. 6. Element distribution map (a) and energy-dispersive X-ray spectrum (b) of a sample carbonized in an Ar environment.

Baixar (140KB)
8. Fig. 7. X-ray fluorescence spectra of the studied samples in gaseous media: 1 – CO2, 2 – N2, 3 – Ar. Peaks Ar (air) and Fe (collimator) – hardware.

Baixar (122KB)
9. Fig. 8. Diffraction patterns of the studied samples in gaseous media: 1 – N2, 2 – CO2, 3 – Ar and bar charts of the corresponding phases.

Baixar (177KB)
10. Fig. 9. Dependences of specific capacitance on the sweep speed during CVA (a) and on the specific current during GZR (b) for electrodes obtained using different gas environments.

Baixar (121KB)
11. Fig. 10. Results of the study using the Trasatti method.

Baixar (65KB)
12. Fig. 11. Reagon diagram.

Baixar (74KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024