Влияние доменной структуры полярных кристаллов LaBGeO₅ на их гиротропные свойства

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Проведено измерение спектров коэффициентов пропускания и показателей поглощения монодоменного и полидоменного образцов LaBGeO₅. Показано, что для более точного измерения вращения плоскости поляризации света ρ необходимо использовать спектры коэффициентов пропускания не только при параллельных и скрещенных поляризаторах, но и при других углах между ними. Полученные значения ρ для обоих образцов достаточно хорошо описываются одной дисперсией с помощью формулы Друде. Это согласуется с тем, что величина ρ не должна меняться при монодоменизации кристалла при данной симметрии (P31 в сегнетоэлектрической фазе и P3121 в параэлектрической). Показано, что генерация второй гармоники черенковского типа наблюдается только в полидоменном образце, при этом излучение второй гармоники не поляризовано. Доменная структура образцов наблюдалась методами растровой электронной микроскопии и силовой микроскопии пьезоотклика. Для полидоменного образца показано наличие лабиринтной доменной структуры, для монодоменного образца изменения контраста в пределах области сканирования не наблюдалось.

Полный текст

Доступ закрыт

Об авторах

А. Ф. Константинова

Институт кристаллографии им. А.В. Шубникова Курчатовского комплекса кристаллографии и фотоники НИЦ “Курчатовский институт”

Email: tatgolovina@mail.ru
Россия, Москва

Т. Г. Головина

Институт кристаллографии им. А.В. Шубникова Курчатовского комплекса кристаллографии и фотоники НИЦ “Курчатовский институт”

Автор, ответственный за переписку.
Email: tatgolovina@mail.ru
Россия, Москва

Е. И. Мареев

Институт кристаллографии им. А.В. Шубникова Курчатовского комплекса кристаллографии и фотоники НИЦ “Курчатовский институт”

Email: tatgolovina@mail.ru
Россия, Москва

А. В. Буташин

Институт кристаллографии им. А.В. Шубникова Курчатовского комплекса кристаллографии и фотоники НИЦ “Курчатовский институт”

Email: tatgolovina@mail.ru
Россия, Москва

И. С. Волчков

Институт кристаллографии им. А.В. Шубникова Курчатовского комплекса кристаллографии и фотоники НИЦ “Курчатовский институт”

Email: tatgolovina@mail.ru
Россия, Москва

Р. В. Гайнутдинов

Институт кристаллографии им. А.В. Шубникова Курчатовского комплекса кристаллографии и фотоники НИЦ “Курчатовский институт”

Email: tatgolovina@mail.ru
Россия, Москва

Н. М. Ашарчук

Институт кристаллографии им. А.В. Шубникова Курчатовского комплекса кристаллографии и фотоники НИЦ “Курчатовский институт”

Email: tatgolovina@mail.ru
Россия, Москва

В. М. Касимова

Национальный исследовательский технологический университет “МИСИС”

Email: tatgolovina@mail.ru
Россия, Москва

Е. В. Забелина

Национальный исследовательский технологический университет “МИСИС”

Email: tatgolovina@mail.ru
Россия, Москва

Н. С. Козлова

Национальный исследовательский технологический университет “МИСИС”

Email: tatgolovina@mail.ru
Россия, Москва

Список литературы

  1. Каминский А.А., Буташин А.В., Милль Б.В., Белоконева Е.Л. // Изв. АН СССР. Неорган. матер. 1990. Т. 26. № 5. C. 1105.
  2. Стефанович С.Ю., Милль Б.В., Буташин А.В. // Кристаллография. 1992. Т. 37. Вып. 4. С. 965.
  3. Belokoneva E.L., David W.I.F., Forsyth J.B., Knight K.S. // J. Phys.: Condens. Matter. 1997. V. 9. P. 3503. https://doi.org/10.1088/0953-8984/9/17/002
  4. Uesu У., Horiuchi N., Osakabe Е. et al. // J. Phys. Soc. Jpn. 1993. V. 62. Р. 2522. https://doi.org/10.1143/JPSJ.62.2522
  5. Onodera А., Strukov В.А., Belov А.А. et al. // J. Phys. Soc. Jpn. 1993. V. 62. Р. 4311. https://doi.org/10.1143/JPSJ.62.4311
  6. Милов Е.В., Струков Б.А. // ФТТ. 2001. Т. 43. С. 495.
  7. Strukov В.А., Milov Е.Н., Milov V.N. et al. // Ferroelectrics. 2005. V. 314. Р. 105. https://doi.org/10.1080/00150190590926247
  8. Akhmatkhanov A., Plashinnov C., Nebogatikov M. et al. // Crystals. 2020. V. 10. № 7. P. 583. https://doi.org/10.3390/cryst10070583
  9. Kaminskii A.A., Butashin A.V., Maslyanitsin I.A. et al. // Phys. Status Solidi. A. 1991. V. 125. № 2. P. 671.
  10. Kaminsky W. // Rep. Prog. Phys. 2000. V. 63. P. 1575. https://doi.org/10.1088/0034-4885/63/10/201
  11. Каминский А.А., Нишиока Х., Уеда К. и др. // Квантовая электроника. 1996. Т. 23. № 5. С. 391.
  12. Hirohashi J., Imai K., Watanabe S. et al. // Proc. SPIE10902, Nonlinear Frequency Generation and Conversion: Materials and Devices XVIII. 2019. P. 1090206. https://doi.org/10.1117/12.2514795
  13. Универсальная измерительная приставка Agilent Cary Universal Measurement Accessory (UMA) // Agilent Technologies. http://www.agilent.com/cs/library/technicaloverviews/public/5991-2529RU.pdf
  14. Шубников А.В., Флинт Е.Е., Бокий Г.Б. Основы кристаллографии. М.: Изд-во АН СССР, 1940. 488 с.
  15. Шубников А.В. Основы оптической кристаллографии. М.: Изд-во АН СССР, 1958. 207 с.
  16. Константинова А.Ф., Гречушников Б.Н., Бокуть Б.В., Валяшко Е.Г. Оптические свойства кристаллов. Минск: Наука и техника, 1995. 302 с.
  17. Golovina T.G., Konstantinova A.F., Dudka A.P. et al. // Crystallography Reports. 2023. V. 68. № 5. P. 732. https://doi.org/10.1134/S106377452360045X
  18. Кизель В.А., Бурков В.И. Гиротропия кристаллов. М.: Наука, 1980. 304 с.
  19. Шувалов Л.А., Иванов Н.Р. // Кристаллография. 1964. Т. 9. Вып. 2. С. 363.
  20. Головина Т.Г., Константинова А.Ф., Набатов Б.В., Евдищенко Е.А. // Кристаллография. 2018. Т. 63. № 6. С. 921. https://doi.org/10.1134/S0023476118060139
  21. Ayoub M., Roedig P., Koynov K. et al. // Opt. Express. 2013. V. 21. № 7. P. 20117. https://doi.org/10.1364/OE.21.008220
  22. Sheng Y., Saltiel S.M., Krolikowski W. et al. // Opt. Lett. 2010. V. 35. № 9. P. 1317. https://doi.org/10.1364/OL.35.001317
  23. Sheng Y., Roppo V., Kalinowski Ks., Krolikowski W. // Opt. Lett. 2012. V. 37. № 18. P. 3864. https://doi.org/10.1364/OL.37.003864
  24. Roede E.D., Mosberg A.B., Evans D.M. et al. // APL Mater. 2021. V. 9. № 2. P. 021105. https://doi.org/10.1063/5.0038909
  25. Kholkin A.L., Kalinin S.V., Roelofs A., Gruverman A. // Scanning Probe Microscopy. Electricaland Electromechanical Phenomena at the Nanoscale / Eds. Kalinin S.V., Gruverman A. New York: Springer, 2007. P. 173.
  26. Калинин А.С. Методы атомно-силовой микроскопии для неразрушающего анализа электромеханических свойств наноструктур. Дис. … канд. физ.-мат. наук. М.: НИЦ КИ, 2017. 104 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Спектры коэффициентов пропускания (а) и показателей поглощения (б) образцов LaBGeO₅ в неполяризованном свете: кривые 1 и 2 соответствуют образцам 1 и 2.

Скачать (95KB)
3. Рис. 2. Экспериментальные спектры коэффициентов пропускания в поляризованном свете при углах τ = 0°, ±30°, ±45°, ±60°, 90° между поляризатором и анализатором: а, б – образец 1, в, г – образец 2.

Скачать (304KB)
4. Рис. 3. Зависимость величины 1/ρ от (λ² – λ₀²) и ее аппроксимация прямой линией (а); дисперсия ρ (б). Кружки – образец 1, квадратики – образец 2.

Скачать (95KB)
5. Рис. 4. Экспериментальные (сплошные линии) и рассчитанные (пунктир) спектры коэффициентов пропускания света при разных значениях τ: а, б – образец 1, в, г – образец 2.

Скачать (307KB)
6. Рис. 5. Фотография излучения ВГ черенковского типа (а) и зависимость энергии ВГ от угла поворота полуволновой пластины (б) для полидоменного образца 2.

Скачать (281KB)
7. Рис. 6. Результаты исследования доменов в кристаллах LaBGeO₅ методами РЭМ (а, б) и СМП (в, г): а, в – образец 1, б, г – образец 2.


© Российская академия наук, 2024