Lactarius and Lactifluus (Russulaceae): species diversity, ecological-biochemical, medical-biological and nutritional aspects
- Authors: Belova N.V.1, Popov E.S.1
-
Affiliations:
- Komarov Botanical Institute of the Russian Academy of Sciences
- Issue: Vol 59, No 1 (2025)
- Pages: 3-11
- Section: REVIEWS AND DISCUSSIONS
- URL: https://ruspoj.com/0026-3648/article/view/681158
- DOI: https://doi.org/10.31857/S0026364825010016
- EDN: https://elibrary.ru/ssgtwp
- ID: 681158
Cite item
Abstract
Among wild edible macromycetes a significant place is occupied by mushrooms of two genera, Lactarius and Lactifluus (Russulaceae), which are most used by the population of Russia and various countries of the world for food purposes. The work attempts to summarize the species diversity, ecological-biochemical, medical-biological and nutritional aspects of edible mushrooms Lactarius and Lactifluus of Russia and the world.
Full Text

About the authors
N. V. Belova
Komarov Botanical Institute of the Russian Academy of Sciences
Author for correspondence.
Email: cultures@mail.ru
Russian Federation, Saint Petersburg, 197022
E. S. Popov
Komarov Botanical Institute of the Russian Academy of Sciences
Email: epopov@binran.ru
Russian Federation, Saint Petersburg, 197022
References
- Adanacioglu N., Tan A., Karabak S., et al. Economically important wild mushroom saffron milk cap [Lactarius deliciosus (L.) Gray] of Aegean Region, Turkey. Anadolu Ege Tarımsal Araştırma Enstitüsü Dergisi 2017. V. 27 (2). P. 91–96.
- Akata I., Ergönül B., Kalyoncu F. Chemical compositions and antioxidant activities of 16 wild edible mushroom species grown in Anatolia. J. Pharmacology. 2012. V. 8 (2). P. 134–138.
- https://doi.org/10.3923/ijp.2012.134.138
- Akgül H., Nur A.D., Sevindik M. et al. Tricholoma terreum ve Coprinus micaceus un bazı biyolojik aktivitelerinin belirlenmesi. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi. 2016. V. 17 (2). P. 158–162.
- https://doi.org/10.17474/acuofd.63466
- Altuner E.M., Akata I. Antimicrobial activity of some macrofungi extracts. SAÜ. Fen Bilimleri Dergisi. 2010. V. 14 (1). P. 45–49.
- Alves M.J., Ferreira I.C., Martins A. et al. Antimicrobial activity of wild mushroom extracts against clinical isolates resistant to different antibiotics. J. Appl. Microbiol. 2012. V. 113 (2). P. 466–475. https://doi.org/10.1111/j.1365-2672.2012.05347.x
- Anke H., Bergendorff O., Sterner O. Assays of the biological activities of guaiane sesquiterpenoids isolated from the fruit bodies of edible Lactarius species. Food and Chemical Toxicol. 1989. V. 27 (6). P. 393–397. https://doi.org/10.1016/0278-6915(89)90145-2
- Bakır T., Ünal S., Karadeniz M. et al. A comparative study on antioxidant properties and metal contents of some edible mushroom samples from Kastamonu, Turkey. Food and Health. 2017. V. 3 (4). P. 132–140. https://doi.org/10.3153/jfsh17016
- Bal C., Akgul H., Sevindik M et al. Determination of the antioxidative activities of six mushrooms. Fresenius Environm. Bull. 2017. V. 26 (10). P. 6246–6252.
- Boa E. Wild edible fungi: a global overview of their use and importance to people. Food and Agriculture Organization of the United Nations. V. 17. Rome, 2004.
- Bolshakov S., Kalinina L., Palomozhnykh E. et al. Agaricoid and boletoid fungi of Russia: the modern country-scale checklist of scientific names based on literature data. 2021. Biol. Communications. V. 66 (4). P. 316–325. https://doi. org/10.21638/spbu03.2021.404
- Bozdoğan A., Ulukanlı Z., Bozok F. et al. Antioxidant potential of Lactarius deliciosus and Pleurotus ostreatus from Amanos Mountains. Adv. Life Sci. 2018. V. 5 (3). P. 113–120.
- Bulakh E.M., Wasser S.P., Nazarova M.M. et al. Lower plants, fungi and bryophytes of the Soviet Far East. Fungi. V. 1: Basidiomycetes. Nauka, SPb., 1990. (In Russ.)
- Cha S., Bell L., Williams C.M. The Relationship between mushroom Intake and cognitive performance: An epidemiological study in the European investigation of cancer-Norfolk Cohort (EPIC-Norfolk). Nutrients. 2024. V. 16. P. 353. https://doi.org/10.3390/nu16030353
- Cheong C.B., Peh G.R, Wei Y. et al. A spirobicyclo[3.1.0]terpene from the investigation of sesquiterpene synthases from Lactarius deliciosus. ACS Chemical Biology. 2023. V. 18 (1). P. 134–140. https://doi.org/10.1021/acschembio.2c00760
- Clericuzio M., Gilardoni G., Malagòn O. et al. Sesquiterpenes of Lactarius and Russula (mushrooms): An update. Natural Prod. Communications. 2008. V. 3 (6). P. 951–974.
- Çol Ayvaz M., Aksu F., Kır F. Phenolic profile of three wild edible mushroom extracts from Ordu, Turkey and their antioxidant properties, enzyme inhibitory activities. British Food J. 2019. V. 121 (6). P. 1428–1260. https://doi.org/10.1108/BFJ-06-2018-0399
- Comandini O., Erős-Honti Z., Jakucs E. et al. Molecular and morpho-anatomical description of mycorrhizas of Lactarius rimosellus on Quercus sp., with ethnomycological notes on Lactarius in Guatemala. Mycorrhiza. 2012. V. 22. P. 279–287. https://doi.org/10.1007/s00572-011-0401-3
- Dai Q., Zhang F.L., Feng T. Sesquiterpenoids specially produced by fungi: structures, biological activities, chemical and biosynthesis (2015–2020). J. Fungi. 2021. V. 7. P. 1026. https://doi.org/10.3390/jof7121026
- Dimitrijević M.V., Mitić V.D., Stankov-Jovanović, V.P. et al. Comprehensive evaluation of the antioxidant activity of six wild edible mushroom species. Adv. Technologies. 2016. V. 5 (2). P. 53–59.
- Dimitrova T. Ethnomycological research in the field of wild mushrooms and medicinal plants. Acta Sci. Naturalis. 2021. V. 8 (3). P. 67–83. https://doi.org/10.2478/asn-2021-0029
- Ding X., Hou Y., Hou W. et al. Structure elucidation and anti-tumor activities of water-soluble oligosaccharides from Lactarius deliciosus (L. ex Fr.) Gray. Pharmacognosy Mag. 2015. V. 11 (44). P. 716–723. https://doi.org/10.4103/097-–1296.165559
- Dulger B., Yilmaz F., Gucin F. Antimicrobial activity of some Lactarius species. Pharmaceutical Biol. 2002. V. 40 (4). P. 304–306. https://doi.org/10.1076/phbi.40.4.304.8468
- Dundar A., Okumus V., Ozdemir S. et al. Determination of cytotoxic, anticholinesterase, antioxidant and antimicrobial activities of some wild mushroom species. Cogent Food et Agriculture. 2016. V. 2 (1). P. 1178060. https://doi.org/10.1080/23311932.2016.1178060
- Erdogan S., Soylu M.K., Başer K.H.C. An investigation of the contents of phenolics, flavonoid compounds and anti-oxidant activity of some wild mushrooms. Planta Medica. 2011. V. 77 (12). P. 54. https://doi.org/10.1055/s-0031-1282442
- Fernandes Â., Antonio A.L., Barreira J.C. et al. Effects of gamma irradiation on the chemical composition and antioxidant activity of Lactarius deliciosus L. wild edible mushroom. Food and Bioprocess Technol. 2013. V. 6 (10). P. 2895–2903. https://doi.org/10.1007/s11947-012-0931-5
- Ferreira I.C., Baptista P., Vilas-Boas M., Barros L. Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: Individual cap and stipe activity. Food Chem. 2007. V. 100 (4). P. 1511–1516. https://doi.org/10.1016/j.foodchem.2005.11.043
- Guerin-Laguette A., Butler R., Wang Y. Advances in the cultivation of Lactarius deliciosus (Saffron Milk Cap) in New Zealand. In: J. Pérez-Moreno etc. (eds). Mushrooms, humans and nature in a Changing World. Springer, Cham, 2020, pp. 141–161.
- Guerin-Laguette A., Cummings N., Butler R.C. et al. Lactarius deliciosus and Pinus radiata in New Zealand: towards the development of innovative gourmet mushroom orchards. Mycorrhiza. 2014 V. 24 (7). P. 511–523. https://doi.org/10.1007/s00572-014-0570-y
- Harmon A.D., Weisgraber K.H., Weiss U. Preformed azulene pigments of Lactarius indigo (Schw.) Fries (Russulaceae, Basidiomycetes). Cellular Molec. Life Sci. 1979. V. 36. P. 54–56. 10.1007/BF02003967' target='_blank'>https://doi: 10.1007/BF02003967
- He M.Q., Zhao R.L., Hyde K.D. et al. Notes outline and divergence time of Basidiomycota. Fungal Diversty. 2019. V. 99. P. 105–367. https://doi.org/10.1007/S13225-019-00435-4
- Hou Y., Ding X., Hou W. et al. Immunostimulant activity of a novel polysaccharide isolated from Lactarius deliciosus (L. ex Fr.) Gray. Indian J. Pharmaceut. Sci. 2013. V. 75 (4). P. 393. https://doi.org/10.4103/0250-474X.119809
- Hou Y., Wang M., Zhao D. et al. Effect on macrophage proliferation of a novel polysaccharide from Lactarius deliciosus (L. ex Fr.) Gray. Oncology Lett. 2019. V. 17 (2). P. 2507–2515. https://doi.org/10.3892/ol.2018.9879
- Joshi S., Vishwakarma M.P., Mahar R. et al. Medicinally important and edible species of genus Lactarius from Garhwal Himalaya, India. Mycosphere. 2013. V. 4 (4). P. 714–720.
- https://doi.org/10.5943/mycosphere/4/4/8
- Kalogeropoulos N., Yanni A.E., Koutrotsios G. et al. Bioactive microconstituents and antioxidant properties of wild edible mushrooms from the island of Lesvos, Greece. Food and Chemical Toxicol. 2013. V. 55. P. 378–385. https://doi.org/10.1016/j.fct.2013.01.01
- Karaçam H., Tunca E., Kaygısız Y. et al. Investigation of the effects of some edible mushroom extracts on human carbonic anhydrase isozymes. Hacettepe J. Biol. Chem. 2015. V. 43 (3). P. 187–193.
- Karatygin I.V., Nezdoiminogo E.L., Novozhilov Yu.K. et al. Funi of the Russian Arctic. Annotated list of species. SPb., 1999. (In Russ.)
- Kasper-Pakosz R., Pietras M., Łuczaj Ł. Wild and native plants and mushrooms sold in the open-air markets of south-eastern Poland. J. Ethnobiol. Ethnomedicine. 2016. V. 12. P. 45. https://doi.org/10.1186/s13002-016-0117-8
- Khaund P., Joshi S.R. Enzymatic profiling of wild edible mushrooms consumed by the ethnic tribes of India. Korean Soc. Appl. Biological Chem. 2014. V. 57 (2). P. 263–271. https://doi.org/10.1007/s13765-013-4225-z
- Kosanić M., Ranković B., Rančić A. et al. Evaluation of metal concentration and antioxidant, antimicrobial, and anticancer potentials of two edible mushrooms Lactarius deliciosus and Macrolepiota procera. J. Food Drug Analysis. 2016. V. 24 (3). P. 477–484. https://doi.org/10.1016/j.jfda.2016.01.008
- Lee H., Park J.Y., Wisitrassameewong K. et al. First report of eight milkcap species belonging to Lactarius and Lactifluus in Korea. Mycobiology. 2018. V. 46 (1). P. 1–12. https://doi.org/10.1080/12298093.2018.1454012
- Li H., Tian Y., Menolli N. et al. Reviewing the world’s edible mushroom species: A new evidence-based classification system. Comprehensive Rews in Food Sci. and Food Safety. 2021. V. 20. P. 1982–2014. https://doi.org/10.1111/1541-4337.12708
- Li H., Wu S., Ma X. et al. The genome sequences of 90 mushrooms. Scientific Reports. 2018. V. 8 (1). P. 1–5. https://doi.org/10.1038/s41598-018-28303-2
- Li M., Yu L., Zhao J. et al. Role of dietary edible mushrooms in the modulation of gut microbiota. J. Functional Foods. 2021. V. 83. P. 104538. https://doi.org/10.1016/j.jff.2021.104538
- Liu J.K. Secondary metabolites from higher fungi in China and their biological activity. Drug discoveries et therapeutics. 2007. V. 1 (2). P. 94–103.
- Łuczaj Ł., Lamxay V., Tongchan K. et al. Wild food plants and fungi sold in the markets of Luang Prabang. Lao PDR J. Ethnobiology and Ethnomedicine. 2021. Vol 17 (6). https://doi.org/10.1186/s13002-020-00423-y
- Matos M.S., Anastácio J.D., Nunes dos Santos C. Sesquiterpene lactones: promising natural compounds to fight inflammation. Pharmaceutics. 2021. V. 13. P. 991. https://doi.org/10.3390/pharmaceutics13070991
- Mlinaric A., Kac J., Fatur T., Filipic M. Anti-genotoxic activity of the mushroom Lactarius vellereus extract in bacteria and in mammalian cell in vitro. Pharmazie. 2004. V. 59 (3). P. 217–221.
- Muszyńska B., Sułkowska-Ziaja K., Ekiert H. Phenolic acids in selected edible Basidiomycota species: Armillaria mellea, Boletus badius, Boletus edulis, Cantharellus cibarius, Lactarius deliciosus and Pleurotus ostreatus. Acta Sci. Pol. Hortorum Cultus. 2013. V. 12 (4). P. 107–116.
- Nanagulyan S., Zakaryan N., Kartashyan N. et al. Wild plants and fungi sold in the markets of Yerevan (Armenia). J. Ethnobiol. Ethnomedicine. 2020. V. 16. P. 26. https://doi.org/10.1186/s13002-020-00375-3
- Onbaşılı D., Çelik G., Katırcıoğlu H. et al. Antimicrobial, antioxidant activities and chemicalcomposition of Lactarius deliciosus (L.) collected from Kastamonu province of Turkey. Kastamonu Üniversitesi Orman Fakültesi Dergis. 2015. V. 15 (1). P. 98–103.
- Ozen T., Darcan C., Akto O. et al. Screening of antioxidant, antimicrobial activities and chemical contents of edible mushrooms wildly grown in the Black Sea region of Turkey. Combinatorial Chemistry et High Throughput Screening. 2011. V. 14 (2). P. 72–84. https://doi.org/10.2174/138620711794474079
- Öztürk M., Tel G., Öztürk F.A. et al. The cooking effect on two edible mushrooms in Anatolia: fatty acid composition, total bioactive compounds, antioxidant and anticholinesterase activities. Records of Natural Products. 2014. V. 8 (2). P. 189.
- Palacios I., Lozano M., Moro C. et al. Antioxidant properties of phenolic compounds occurring in edible mushrooms. Food Chem. 2011. V. 128. P. 674–678. https://doi.org/10.1016/j.foodchem.2011.03.085
- Peintner U., Schwarz S., Mesic´ A. et al. Mycophilic or mycophobic? Legislation and guidelines on wild mushroom commerce reveal different consumption behaviour in european countries. PLOS One. 2013. V. 8 (5). P. e63926. https://doi.org/10.1371/journal.pone.0063926
- Pérez-Moreno J., Martínez-Reyes M., Yescas-Pérez A. et al. Wild mushroom markets in central Mexico and a case study at Ozumba. Economic Botany. 2008. V. 62 (3). P. 425–436. https://doi.org/10.1007/s12231-008-9043-6
- Pérez-Moreno J., Mortimer P.E., Xu J. et al. Global perspectives on the ecological, cultural and socioeconomic relevance of wild edible fungi. Stud. Fungi. 2021. V. 6 (1). P. 408–424 www.studiesinfungi.org ISSN2465–4973. https://doi.org/10.5943/sif/6/1/31
- Pogoń K., Jaworska G., Duda-Chodak A. et al. Influence of the culinary treatment on the quality of Lactarius deliciosus. Foods. 2013. V. 2 (2). P. 238–253.
- https://doi.org/10.3390/foods2020238
- Rapior S., Fons F., Bessière J.M. The fenugreek odor of Lactarius helvus. Mycologia. 2000. V. 92 (2). P. 305–308. https://doi.org/10.2307/3761565
- Redžić S., Barudanović S., Pilipović S. Wild mushrooms and lichens used as human food for survival in war conditions; Podrinje-Zepa region (Bosnia and Herzegovina, W. Balkan). Human Ecology Review. 2010. V. 17 (2). P. 175–181.
- Reis F.S., Heleno S.A., Barros L. et al. Toward the antioxidant and chemical characterization of mycorrhizal mushrooms from northeast Portugal. J. Food Sci. 2011. V. 76 (6). P. 824–830. https://doi.org/10.1111/j.1750-3841.2011.02251.x
- Ruthes A.C., Carbonero E.R., Córdova M.M. et al. Lactarius rufus (1→3), (1→6)-βd-glucans: structure, antinociceptive and anti-inflammatory effects. Carbohydr. Polymers. 2013. V. 9. P. 129–136. https://doi.org/10.1016/j.carbpol.2013.01.026
- Sadi G., Kaya A., Yalcin H.A. et al. Wild edible mushrooms from Turkey as possible anticancer agents on HepG2 cells together with their antioxidant and antimicrobial properties. Int. J. Medicinal Mushrooms. 2016. V. 18 (1). P. 83–95. https://doi.org/10.1615/IntJMedMushrooms.v18.i1.100
- Santoyo S., Ramírez‐Anguiano A.C., Reglero G. et al. Improvement of the antimicrobial activity of edible mushroom extracts by inhibition of oxidative enzymes. Int. J. Food Sci. Technol. 2009. V. 44 (5). P. 1057–1064. https://doi.org/10.1111/j.1365-2621.2008.01896.x
- Sõukand R., Pieroni A., Biró M. et al. An ethnobotanical perspective on traditional fermented plant foods and beverages in Eastern Europe. J. Ethnopharmacol. 2015. V. 170. P. 284–296. https://doi.org/10.1016/j.jep.2015.05.018
- Stegna M., Urleb U., Kreft S. et al. Screening for selective thrombin inhibitors in mushrooms. Blood Coagulation and Fibrinolysis. 2001. V. 12 (2). P 123–8. https://doi.org/10.1097/00001721-200103000-00006
- Su S., Ding X., Fu L. et al. Structural characterization and immune regulation of a novel polysaccharide from Maerkang Lactarius deliciosus Gray. Int. J. Molec. Medicine. 2019. V. 44 (2). P. 713–724. https://doi.org/10.3892/ijmm.2019.421
- Suortti T., von Wright A., Koskinen A. Necatorin, a highly mutagenic compound from Lactarius necator. Phytochemistry. 1983. V. 22 (12). P. 2873–2874. https://doi.org/10.1016/S0031-9422(00)97723-9
- Tala M.F., Qin J., Ndongo J.T. et al. New azulene-type sesquiterpenoids from the fruiting bodies of Lactarius deliciosus. Natural Prod. Bioprospecting. 2017. V. 7 (3). P. 269–273. https://doi.org/10.1007/s13659-017-0130-1
- Tsvetkova I., Naydenski H., Petrova A. et al. Antibacterial activity of some Bulgarian higher basidiomycetes mushrooms. Int. J. Medicinal Mushrooms. 2006. V. 8 (1). P. 63–66. https://doi.org/10.1615/IntJMedMushr.v8.i1.80
- Velíšek J., Ceipek K. Pigments of higher fungi: A review. Czech J. Food Sci. 2011. V. 29 (2). P. 87–102.
- Verbeken A., Walleyn R., Sharp C. et al. Studies in tropical African Lactarius species. 9. Records from Zimbabwe. Systematics and Geography of Plants. 2000. V. 70. P. 181–215. https://doi.org/10.2307/3668621
- Veteläinen M., Huldén M., Pehu T. State of plant genetic resources for food and agriculture in Finland. In: Second Finnish National Report. Country Report on the State of Plant Genetic Resources for Food and Agriculture (Report). Sastamala, 2008, pp. 1–14.
- Vidari G., Vita Finzi P. Sesquiterpenes and other secondary metabolites of genus Lactarius (Basidiomycetes): Chemistryand biological activity. In: Studies in Natural Products Chemistry. Structure and Chemistry (Part D). 1995. V. 17. Atta-ur-Rahman (Ed). Elsevier, L., pp. 153–206.
- Wang R., Herrera M., Xu W. Ethnomycological study on wild mushrooms in Pu’er Prefecture, Southwest Yunnan, China. J. Ethnobiol. Ethnomedicine. 2022. V. 18. P. 55. https://doi.org/10.1186/s13002-022-00551-7
- Wang X.H. Seven new species of Lactarius subg. Lactarius (Russulaceae) from southwestern China. Mycosystema. 2017. V. 36 (11). P. 1463–1482. https://doi.org/10.13346/j.mycosystema.170155
- Wang X.H., Buyck B., Verbeken A. et al. Revisiting the morphology and phylogeny of Lactifuus with three new lineages from southern China. Mycologia. 2015. V. 107. P. 941–958. https://doi.org/10.3852/13-393
- Wood W.F., Brandes J.A., Foy B.D. et al. The maple syrup odour of the “candy cap” mushroom, Lactarius fragilis var. rubidus. Biochem. Syst. Ecology. 2012. V. 43. P. 51–53. https://doi.org/10.1016/j.bse.2012.02.027
- Wu Y., Wang H., Ng T. Purification and characterization of a novel RNase with antiproliferative activity from the mushroom Lactarius flavidulus. J. Antibiotics (Tokyo). 2012. V. 65 (2). P. 67–72. https://doi.org/10.1038/ja.2011.112
- Xu Z., Fu L., Feng S. et al. Chemical composition, antioxidant and antihyperglycemic activities of the wild Lactarius deliciosus from China. Molecules. 2019. V. 24. P. 1357. https://doi.org/10.3390/molecules24071
- Yang X.L., Luo D.Q., Dong Z.J. et al. Two new pigments from the fruiting bodies of the basidiomycete Lactarius deliciosus. Helvetica Chimica Acta. 2006. V. 89 (5). P. 988–990. https://doi.org/10.1002/hlca.200690103
- Zhang A.L., Liu L.P., Wang M. et al. Bioactive ergosterol derivatives isolated from the fungus Lactarius hatsudake. Chemistry of Natural Compounds. 2007. V. 43 (5). P. 637–638. https://doi.org/10.1007/s10600-007-0215-x
- Булах Э.М., Вассер С.П., Назарова М.М. и др. (Bulakh et al.) Низшие растения, грибы и мохообразные советского Дальнего Востока. Грибы. Т. 1. Базидиомицеты. СПб.: Наука, 1990. 407 с.
- Каратыгин И.В., Нездойминого Е.Л., Новожилов Ю.К. и др. (Karatygin et al.) Грибы Российской Арктики. Аннотированный список видов. СПб.: Изд-во Гос. химико-фармацевт. акад., 1999. 212 с.
Supplementary files
