Two new for Russia Arrhenia species collected in the Altay Republic, Western Siberia, Russia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article provides information on two new species for Russia, Arrhenia leucotricha and A. subglobisemen, collected in the territory of the Altai Republic. The macro- and micromorphological characteristics of both species were described in detail, and their ITS nrDNA sequences were acquired and analysed. The data on the substrate specificity, ecological preferences in the southern part of Western Siberia, and their geographical distribution in the Holarctic region are discussed.

Full Text

Restricted Access

About the authors

I. A. Gorbunova

Central Siberian Botanical Garden of the Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: fungi2304@gmail.com
Russian Federation, Novosibirsk, 630090

N. V. Filippova

Yugra State University

Email: filippova.courlee.nina@gmail.com
Russian Federation, Khanty-Mansiysk, 628012

References

  1. Altschul S.F., Gish W., Miller W. et al. Basic local alignment search tool. J. Molec. Biol. 1990. V. 215 (3). P. 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
  2. Barrasa J.M., Rico V.J. The non-omphalinoid species of Arrhenia in the Iberian Peninsula. Mycologia. 2003. V. 95 (4). P. 700–713.
  3. Blanco Dios J.B. Notes on the genus Arrhenia (I): Arrhenia pontevedrana, sp. nov. and A. subglobisemen (Agaricales, Basidiomycota), from the northwest of the Iberian Peninsula. January Studies in Fungi. 2019. V. 4 (1). P. 185–191. https://doi.org/10.5943/sif/4/1/20
  4. Bolshakov S., Kalinina L., Palomozhnykh E. et al. Agaricoid and boletoid fungi of Russia: the modern country-scale checklist of scientific names based on literature data. Biological communication. 2021. V. 66 (4). P. 316–325. https://doi.org/10.21638/spbu03.2021.404
  5. Clémençon H. Methods for working with macrofungi: Laboratory cultivation and preparation of larger fungi for light microscopy. Zurich, 2009.
  6. Corriol G. Arrhenia subglobisemen, un nouveau nom pour Agaricus tremulus sensu Persoon, Fries. Bull. Trim. Féderation Mycol. Dauphiné-Savoie. 2016. V. 222. P. 5–20.
  7. Gardes M., Bruns T.D. ITS primers with enhanced specifity for Basidiomycetes: application to identification of mycorrhizae and rusts. Molec. Ecology. 1993. V. 2. P. 113–118.
  8. GBIF Occurrence Download (Arrhenia subglobisemen). 2024. https://doi.org/10.15468/dl.vprjs2
  9. Gorbunova I.A. Macromycetes of the alpine region of Altai. Turczaninowia. 2010. V. 13 (3). P. 125–134. (In Russ.).
  10. Gorbunova I., Filippova N. Fungarium of Gorbunova Irina A. (Central Siberian Botanical Garden, NSK). Yugra State University Biological Collection (YSU BC). 2024. Occurrence dataset. https://doi.org/10.15468/upme2c. Accessed 31.01.24.
  11. Guindon S., Dufayard J.F., Lefort V. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biol. 2010. V. 59. P. 307–321.
  12. Hoang D.T., Chernomor O., Haeseler A. v. et al. UFBoot2: Improving the ultrafast bootstrap approximation. 2017. Molec. Biol. Evol. V. 35 (2). P. 518–522. https://doi.org/10.1093/molbev/msx281
  13. Ivolov A.V., Bolshakov S. Yu., Silaeva T.V. Study of species diversity of macromycetes. Saransk, Mord. St. University, Saransk, 2017. (In Russ.)
  14. Kalyaanamoorthy S., Minh B.Q., Wong T. et al. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods. 2017. V. 14. P. 587–589. https://doi.org/10.1038/nmeth.4285
  15. Kazutaka K., John R., Kazunori D.Y. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinformatics. 2019. V. 20 (4). P. 1160–1166. https://doi.org/10.1093/bib/bbx108
  16. Knudsen H., Vesterholt J. Funga Nordica. Agaricoid, boletoid, clavarioid, cyphelloid and gastroid genera. Nordsvamp, Copenhagen, 2018.
  17. Koichiro T., Glen S., Sudhir K. MEGA11: Molecular evolutionary genetics analysis. Vers. 11. Molec. Biol. Evol. 2021. V. 38 (7). P. 3022–3027. https://doi.org/10.1093/molbev/msab120
  18. Nguyen L.T., Schmidt H.A., Haeseler A.V. et al. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Molec. Biol. Evol. 2015. V. 32. P. 268–274. https://doi.org/10.1093/molbev/msu300
  19. Voitk A., Saar I., Lücking R. et al. Surprising morphological, ecological and ITS sequence diversity in the Arrhenia acerosa complex (Basidiomycota: Agaricales: Hygrophoraceae). Sydowia. 2020. V. 73. P. 133–162. https://doi.org/10.12905/0380.sydowia73-2020-0133
  20. Rambaut А. FigTree v1.4.4. 2006–2018. https://github.com/rambaut/figtree/releases/tag/v1.4.4
  21. White T.J., Bruns T., Taylor J. Amplification and direct se-quencing of fungal ribosomal RNA genes for phylogenetics. In: M.A. Innis et al. (eds). PCR protocols: a guide to methods and applications, 1990, pp. 315–322.
  22. Горбунова И.А. (Gorbunova) Макромицеты альпийской области Алтая. Turczaninowia. 2010. № 13 (3). С. 125–134.
  23. Ивойлов А.В., Большаков С.Ю., Силаева Т.Б. (Ivoylov et al.) Изучение видового разнообразия макромицетов: учеб. пособие. Саранск: Изд-во Мордов. ун-та, 2017. 160 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Basidiomata and micromorphological structures of studied specimens: A – Arrhenia leucotricha [in the right inset – basidiomata (bar – 1 cm), on the left inset – spores and basidia (bar – 10 µm]; B – A. subglobisemen [in the right inset – basidiomata (bar – 1 cm), in the left inset – spores and basidia (bar – 10 µm)].

Download (311KB)
3. Fig. 2. ML best tree of selected ITS sequences of Arrhenia acerosa complex reconstructed based on the ITS sequence dataset, obtained by analysis in IQTREE1.6.12. The newly generated sequences are highlighted in bold font, and bootstrap percentage is provided above the branches.

Download (507KB)

Copyright (c) 2025 Russian Academy of Sciences