Relationship between phytochrome photoactivity and the degree of auxin binding to the receptor in cotton genotypes differing in wilt tolerance

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper studies some characteristics of three groups of cotton varieties that differ in their resistance to wilt: non-resistant, moderately resistant and resistant. The activity of the phytochrome system in etiolated cotton seedlings was studied using the low-temperature luminescence method, and the ability of red light to increase the specific binding of auxin to its binding sites was studied using the method of studying the binding of radioactively labeled auxin 3H-IAA to auxin-binding sites in membrane preparations and soluble proteins from cotton hypocotyls. It has been shown that the higher the resistance to wilt in different cotton varieties, the higher their activity of the phytochrome system and the higher the increase under the influence of red light, the specific binding of 3H-IAA with membrane preparations and soluble proteins obtained from these cotton varieties. Establishing a direct correlation between cotton resistance to wilt, phytochrome photoactivity and the level of auxin affinity for its receptor creates prospects for further progress in the study of phytochrome-phytohormonal interactions in the regulation of cotton plant resistance to Verticillium dahliae.

全文:

受限制的访问

作者简介

I. Akhmedzhanov

National University of Uzbekistan

编辑信件的主要联系方式.
Email: iskakhm@mail.ru
乌兹别克斯坦, Tashkent, 100047

А. Tonkikh

Institute of Microbiology of the Academy of Sciences of the Republic of Uzbekistan

Email: anatoliytonkikh@mail.ru
乌兹别克斯坦, Tashkent, 100047

M. Khotamov

Institute of Genetics and Plant Experimental Biology of the Academy of Sciences of the Republic of Uzbekistan

Email: mansurhatamov@mail.ru
乌兹别克斯坦, Yukori-Yuz, 111208

P. Merzlyak

National University of Uzbekistan

Email: galores@list.ru
乌兹别克斯坦, Tashkent, 100047

参考

  1. Ahmed S., Kovinich N. Regulation of phytoalexin biosynthesis for agriculture and human health. Phytochemistry Reviews. 2021. V. 20. P. 483–505. https://doi.org/10.1007/s11101-020-09691-8
  2. Akhmedzhanov I.G. Photoregulation of physiological reactions in cotton. Diss. … Dr Biol. Tashkent, 1994. (In Russ.).
  3. Akhmedzhanov I.G. Dzholdasova K.B., Chechulina M.V. et al. The influence of wound damage to etiolated cotton seedlings on the dark conversion of phytochrome. Physiologia i biochimia culturnikh rasteniy. 1992. N5. P. 472–476. (In Russ.)
  4. Akhmedzhanov I.G., Gussakovsky E.E., Avazkhodzhaev M. Kh. et al. Regulation of phytoalexin formation in cotton tissues when seeds are irradiated with red light. Uzbekskiy biologicheskiy zhurnal. 1993. N1. P. 3–5. (In Russ.)
  5. Akhmedzhanov I.G., Khotamov M.M. Investigation of cotton wilt resistance by fluorescence spectroscopy. Mikologiya i fitopatologiya. 2022. V. 56 (2). P. 105–113.
  6. Akhmedzhanov I.G., Tonkikh A.K., Khotamov M.M. Induction of nonspecific resistance of plants to harmful factors of environment. Uzbekskiy biologicheskiy zhurnal. 2017. N5. P. 44–48.
  7. Ang A. Ch.H., Ostergaard L. Save your TIRs – more to auxin than meets the eye. New Phytol. 2023. V. 238. P. 971–976. https://doi.org/10.1111/nph.18783
  8. Arzanova I.A., Tonkikh A.K., Salikhov Sh.I. Isolation of an auxin-binding protein regulating RNA synthesis from cotton seedlings. Khimiya rastitelnogo syrya. 1995. N3. P. 457–462. (in Russ.)
  9. Bîlc B.A., Luchian M.R. Aspects related to the relationship between phytochrome and phytohormones. BIostudent. 2020. V. 3 (1). P. 81–102.
  10. Chumikina L.V., Arabova L.I., Kolpakova V.V. et al. Phytohormones and abiotic stresses. Chimiya rastitelnogo syrya. 2021. N4. P. 5–30. (In Russ.)
  11. Colon-Carmona A., Chen D.L., Yeh K.C. et al. Aux/IAA proteins are phosphorylated by phytochrome in vivo. Plant Physiol. 2000. V. 124. P. 1728–1738.
  12. Duan L., Liu H., Li X. et al. Multiple phytohormones and phytoalexins are involved in disease resistance to Magnaporthe oryzae invaded from roots in rice. Physiol. Plant. 2014. V. 152 (3). P. 486–500. https://doi.org/10.1111/ppl.12192
  13. Dzholdasova K.B., Akhmedzhanov I.G., Gussakovsky E.E. Luminometer for measuring low-temperature luminescence of biological objects. Uzbekskiy Biologicheskiy Zhurnal. 1992. N6. P. 5–7. (In Russ.)
  14. Escobar-Bravo R., Klinkhamer P.G.L., Leiss K.A. Interactive effects of UV-B light with abiotic factors on plant growth and chemistry, and their consequences for defense against arthropod herbivores. Front. Plant Sci. 2017. https://doi.org/10.3389/fpls.2017.00278
  15. Fankhauser C. The phytochromes, a family of red/far-red absorbing photoreceptors. J. Biol. Chem. 2001. V. 276. P. 11453–11456.
  16. Figen Mert-Türk. Phytoalexins: Defense or just a response to stress? J. Cell Mol. Biol. 2002. N1. P. 1–6.
  17. Fu J., Wang S. Insights into auxin signaling in plant – pathogen interactions. Front. Plant Sci. 2011. https://doi.org/10.3389/fpls.2011.00074
  18. Han Y.J., Kim S.H., Kim J.I. Phytochrome phosphorylation in plant light signaling. Front. Plant Sci. 2024. V. 15. Art. 1259720. https://doi.org/10.3389/fpls.2024.1259720
  19. Khotamov M.M., Akhmedzhanov I.G. Study of Verticillium wilt pathogenesis in different cotton genotypes. Mikologiya i fitopatologiya. 2021. V. 55 (2). P. 148–154.
  20. Konan Y.K.F., Kouassi K.M., Kouakou K.L. et al. Effect of methyl jasmonate on phytoalexins biosynthesis and induced disease resistance to Fusarium oxysporum f. sp. vasinfectum in cotton (Gossypium hirsutum L.). Int. J. Agronomy. 2014. https://doi.org/10.1155/2014/806439
  21. Kusnetsov V., Doroshenko A., Kudryakova N. et al. Role of phytohormones and light in de-etiolation. Russian J. Plant Physiol. 2020. V. 67 (6). P. 971–984.
  22. Lucas M., Prat S. PIFs get BRright: Phytochrome interacting factors as integrators of light and hormonal signals. New Phytol. 2014. V.202. P. 1126–1141. https://doi.org/10.1111/nph.12725
  23. Lymperopoulos P., Msanne J., Rabara R. Phytochrome and phytohormones: working in tandem for plant growth and development. Front. Plant Sci. 2018.
  24. https://doi.org/10.3389/fpls.2018.01037
  25. Manzhelesova N.E., Volynets A.P. Phytohormones and phenolic compounds in the fight against plant diseases. Nauka i inovatsii. 2015. N3. P. 62–65. (In Russ.)
  26. Markova I.A., Tonkikh A.K., Salikhov S.I. Detection of auxin-binding sites in cotton seedlings. Physiologia rasteniy. 1990. V. 37 (4). P. 727–732. (In Russ.)
  27. Moreno J.E., Ballaré C.L. Phytochrome regulation of plant immunity in vegetation canopies. J. Chem. Ecol. 2014. V. 40. P. 848–857. https://doi.org/10.1007/s10886-014-0471-8
  28. Nagatani A. Lighting up the nucleus. Science. 2000. V. 288 (5467). P. 821–822. https://doi.org/10.1126/science.288.5467.821
  29. Parks B.M. The red side of photomorphogenesis. Plant Physiol. 2003. V. 133. P. 1437–1444.
  30. Quail P.H. Phytochrome genes and their expression. In: R.E. Kendrick, G.H.M. Kronenberg (eds). Photomorphogenesis in Plants. Kluwer Academic, Dordrecht, 1994. Pp. 71–104.
  31. Quail P.H. Phytochrome photosensory signaling networks. Nature. 2002. V.3. P. 85–93.
  32. Quail P.H. Phytochrome signal transduction network. In: E. Schaefer, F. Nagy (eds). Photomorphogenesis in plants and bacteria, 3rd edn. Springer, Dordrecht, 2006. Pp. 335–356.
  33. Rosado D., Gramegna G., Cruz A., et al. Interacting factors (PIFs) in Solanum lycopersicum: diversity, evolutionary history and expression profiling during different developmental processes. PLOS One. 2016. V. 11. e0165929. https://doi.org/10.1371/journal.pone.0165929
  34. Seo M., Nambara E., Choi G. et al. Interaction of light and hormone signals in germinating seeds. Plant Mol. Biol. 2009. V.69. P. 463–472. https://doi.org/10.1007/s11103-008-9429-y
  35. Sheerin D.J., Hiltbrunner A. Molecular mechanisms and ecological function of far-red light signaling. Plant Cell Environ. 2017. V. 40. P. 2509–2529. https://doi.org/10.1111/pce.12915
  36. Shucla P.K., Mishra P., Mishra N. A prospective study on emerging roles of phytoalexins in plant protection. Int. J. Pharma Biol. Sci. 2019. V. 10 (3). P. 186–198.
  37. Sineshchekov V. Two molecular species of phytochrome A with distinct modes of action. Funct. Plant Biol. 2018. V. 46 (2). Р. 118–135. https://doi.org/10.1071/fp18156
  38. Sineshchekov V.A. Two distinct molecular types of phytochrome A in plants: evidence of existence and implications for functioning. Int. J. Molec. Sci. 2023. V. 24. Art. 8139. https://doi.org/10.3390/ijms24098139
  39. Sineshchekov V.A., Loskovich A.V., Inagaki N. et al. Two native pools of phytochrome A in monocots: evidence from fluorescence investigations of phytochrome mutants of rice. Photochem. Photobiol. 2006. V. 82. P. 1116–1122.
  40. Slusarenko A.J., Fraser R.S.S., Van Loon C. Mechanism of resistance to plant diseases. Kluwer Academic Press, Dordrecht, Boston, London. 2000.
  41. Tiku A.R. Antimicrobial compound (phytoanticipins and phytoalexins) and their role in plant defense. In: J.M. Merlion, K. Ramawat (eds). Co-evalution of secondary metabolites. Reference series in phytochemistry. Springer, Cham, 2020. P. 845–868.
  42. Tonkikh A.K., Babaev T.A., Markova I.A. et al. The mechanism of auxin-like action of thyroxine. Fiziologiya rasteniy. 1995. V. 42 (2). P. 195–200. (In Russ.)
  43. Tonkikh A.K., Nadzhimova H.K., Akhmedzhanov I.G. et al. Effect of red light on auxin-binding proteins. Reports of the Academy of Sciences of the Republic of Uzbekistan. 2005. N4. P. 82–85. (In Russ.)
  44. Tripathi Sh., Hoang Qu.T.N., Han Y.-J. et al. Regulation of photomorphogenic development by plant phytochromes. Int. J. Molec. Sci. 2019. V. 20. Art. 6165. https://doi.org/10.3390/ijms20246165
  45. Vayda K., Donohue K., Auge G.A. Within- and trans-generational plasticity: seed germinationresponses to light quantity and quality. AoB Plants. 2018. V. 10 (3). https://doi.org/10.1093/aobpla/ply023
  46. Voitsekhovskaya O.V. Phytochromes and other (photo)receptors of information in plants. Fiziologiya rasteniy. 2019. V. 66 (3). P. 163–177. (In Russ.) https://doi.org/10.1134/S0015330319030151
  47. Volynets A.P. Distribution and dynamics of phenolic auxin effectors in plants. Reports of the Academy of Sciences of Belarus. 1997. V. 41. P. 73–76. (In Russ.)
  48. Volynets A.P. Phenolic compounds in plant life. Belarus. navuka, Minsk, 2013. (In Russ.)
  49. Wang Q., Zhu Z., Ozkardesh K. et al. Phytochromes and phytohormones: the shrinking degree of separation. Mol. Plant. 2013. V. 6 (5–7). https://doi.org/10.1093/mp/sss102
  50. Wit M., Galvão V.C., Fankhauser C. Light-mediated hormonal regulation of plant growth and development. Annu. Rev. Plant Biol. 2016. V. 67. P. 513–537. https://doi.org/10.1146/annurev-arplant-043015-112252
  51. Yang Y.Y., Nagatani A., Zhao Y.J. et al. Effects of gibberellins on seed germination of phytochrome-deficient mutants of Arabidopsis thaliana. Plant Cell Physiol. 1995. V. 36 (7). P. 1205–1211.
  52. Yedidia I., Shoresh M., Kerem Z. et al. Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Appl. Envir. Microbiol. 2003. V. 69 (12). P. 7343–7353. https://doi.org/10.1128/aem.69.12.7343-7353.2003
  53. Арзанова И.А., Тонких А.К., Салихов Ш.И. (Arzanova et al.) Выделение из проростков хлопчатника ауксинсвязывающего белка регулирующего синтез РНК // Химия природных соединений. 1995. № 3. С. 457–462.
  54. Ахмеджанов И.Г. Джолдасова К.Б., Чечулина М.В. и др. (Akhmedzhanov et al.) Влияние раневого поражения этиолированных проростков семян хлопчатника на темновую конверсию фитохрома // Физ. и биох. культ. растен. 1992. № 5. С. 472–476.
  55. Ахмеджанов И.Г. (Akhmedzhanov et al.) Фоторегуляция физиологических реакций в хлопчатнике. Дисс. … докт. биол. наук. Ташкент, 1994. 321 с.
  56. Ахмеджанов И.Г., Гуссаковский Е.Е., Авазходжаев М.Х. и др. (Akhmedzhanov et al.) Регуляция фитоалексинообразования в тканях хлопчатника при облучении семян красным светом // Узб. биол. жунал. 1993. № 1. С. 3–5.
  57. Войцеховская О.В. (Voystekhovskaya) Фитохромы и другие (фото)рецепторы информации у растений // Физиология растений. 2019. Т. 66. № 3. C. 163–177.
  58. Волынец А.П. (Volynets) Распространение и динамика фенольных эффекторов ауксина в растениях // Доклады АН Беларуси. 1997. Т. 41. С. 73–76.
  59. Волынец А.П. (Volynets) Фенольные соединения в жизнедеятельности растений. Минск: Беларус. навука, 2013. 283 с.
  60. Джолдасова К.Б., Ахмеджанов И.Г., Гуссаковский Е.Е. (Dzholdasova et al.) Люминометр для измерения низкотемпературной люминесценции биологических объектов // Узб. биол. журнал. 1992. № 6. С. 5–7.
  61. Манжелесова Н.Е., Волынец А.П. (Manzhelesova et al.) Фитогормоны и фенольные соединения в борьбе с болезнями растений // Наука и инновации. 2015. № 3. С. 62–65.
  62. Маркова И.А., Тонких А.К., Салихов Ш.И. (Markova et al.) Обнаружение ауксинсвязывающих участков в проростках хлопчатника // Физиология растений. 1990. Т. 37. Вып. 4. С. 727–732.
  63. Медведев М.М., Батова А.Ю., Мошков А.В. и др. (Medvedev et al.) Роль ионных каналов в трансдукции ауксинового сигнала // Физиология растений. 1999. Т. 46. № 5. С. 711–717.
  64. Тонких А.К., Бабаев Т.А., Маркова И.А. и др. (Tonkik et al.) Механизм ауксиноподобного действия тироксина // Физиология растений. 1995. Т. 42. № 2. С. 195–200.
  65. Тонких А.К., Наджимова Х.К., Ахмеджанов И.Г. и др. (Tonkikh et al.) Действие красного света на ауксинсвязывающие белки //Доклады АН РУз. 2005. № 4. С. 82–85.
  66. Чумикина Л.В., Арабова Л.И. и др. (Chumikina et al.) Фитогормоны и абиотические стрессы // Химия растительного сырья. 2021. № 4. С. 5–30.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Excitation spectra of low-temperature luminescence of etiolated cotton seedlings before irradiation (1), after irradiation with far-red (2) and red light (3).

下载 (115KB)

版权所有 © Russian Academy of Sciences, 2025