Search for the insertions and chromosomal rearrangements affecting changes in gene expression in D. melanogaster strains with impaired transposition control of the gypsy retrotransposon
- Authors: Kukushkina I.V.1, Lavrenov A.R.1,2, Milyaeva P.A.1,3, Lavrenova A.I.1, Kuzmin I.V.1, Nefedova L.N.1, Kim A.I.1,3
-
Affiliations:
- Lomonosov Moscow State University
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences
- Shenzhen MSU-BIT University
- Issue: Vol 58, No 5 (2024)
- Pages: 743-755
- Section: ГЕНОМИКА. ТРАНСКРИПТОМИКА
- URL: https://ruspoj.com/0026-8984/article/view/683299
- DOI: https://doi.org/10.31857/S0026898424050055
- EDN: https://elibrary.ru/HUPDPY
- ID: 683299
Cite item
Abstract
Transposable elements (TE) increase the frequency of spontaneous mutations in the genome and are also capable of altering function and affecting gene expression, so it is important to have an idea of their activity and position in the genome. The paper demonstrates the advantage of combining the analysis of two sequencing methods of searching TE insertions and chromosomal rearrangements: full-genome nanopore sequencing allows the detection of TE insertions, and the use of transcriptome sequencing evaluates the effect of insertions on gene expression. The results are presented using SS (w1, flamenco mutant) and MS (w1, flamenco mutant, active copy of gypsy) strains with the flamenco phenotype as an example to investigate the causes of impaired control of TE activity. The laboratory wild type strain D32 was used as a control. Insertions and deletions of TE into the euchromatin regions of the genome and into the introns of genes relative to the reference genome were found in the studied strains and wild-type strains. In the analyzed genomes, a search for insertions and deletions in RNA interference system genes and in differentially expressed genes in SS and MS strains with flamenco phenotype was performed. We have detected TE insertions in various structures of AGO3, CG17147, Su(var)3-3, Gasz, CG43348, moody, CG17752 genes. For most of the analyzed genes, no correlation between a change in the TE position and a decrease or increase in gene transcription was found. A chromosomal rearrangement affecting the 3’-untranslated region has been detected for the vig gene. Based on the results of long-read sequencing, a de novo genome assembly for the MS strain was obtained. The increased expression in SS and MS strains for CR45822 and pst genes was found to be associated with triplication, but not with changes in gene regulatory sequences or TE insertion.
Full Text

About the authors
I. V. Kukushkina
Lomonosov Moscow State University
Author for correspondence.
Email: vladimirova-bph@yandex.ru
Faculty of Biology
Russian Federation, Moscow, 119234A. R. Lavrenov
Lomonosov Moscow State University; Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences
Email: vladimirova-bph@yandex.ru
Faculty of Biology
Russian Federation, Moscow, 119234; Moscow, 119071P. A. Milyaeva
Lomonosov Moscow State University; Shenzhen MSU-BIT University
Email: vladimirova-bph@yandex.ru
Faculty of Biology
Russian Federation, Moscow, 119234; Longgang District, Shenzhen, 518172A. I. Lavrenova
Lomonosov Moscow State University
Email: vladimirova-bph@yandex.ru
Faculty of Biology
Russian Federation, Moscow, 119234I. V. Kuzmin
Lomonosov Moscow State University
Email: vladimirova-bph@yandex.ru
Faculty of Biology
Russian Federation, Moscow, 119234L. N. Nefedova
Lomonosov Moscow State University
Email: nefedova@mail.bio.msu.ru
Faculty of Biology
Russian Federation, Moscow, 119234A. I. Kim
Lomonosov Moscow State University; Shenzhen MSU-BIT University
Email: vladimirova-bph@yandex.ru
Faculty of Biology
Russian Federation, Moscow, 119234; Longgang District, Shenzhen, 518172References
- Moschetti R., Dimitri P., Caizzi R., Junakovic N. (2010) Genomic instability of I elements of Drosophila melanogaster in absence of dysgenic crosses. PLoS One. 5(10), e13142.
- Coline G., Theron E., Brasset E., Vaury C. (2014) History of the discovery of a master locus producing piRNAs: the flamenco/COM locus in Drosophila melanogaster. Front. Genet. 5, 257.
- Lee Y.S., Nakahara K., Pham J.W., Kim K., He Z., Sontheimer E.J., Carthew R.W. (2004) Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell. 117(1), 69–81.
- Brennecke J., Aravin A.A., Stark A., Dus M., Kellis M., Sachidanandam R., Hannon G.J. (2007) Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell. 128(6), 1089–1103.
- Aravin A.A., Hannon G.J., Brennecke J. (2007) The piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science. 318(5851), 761–764.
- Siomi H., Siomi M.C. (2009) On the road to reading the RNA-interference code. Nature. 457(7228), 396–404.
- Cox D.N., Chao A., Baker J., Chang L., Qiao D., Lin H. (1998) A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev. 12(23), 3715–3727.
- Baumgartner L., Handler D., Platzer S. W., Yu C., Duchek P., Brennecke J. (2022) The Drosophila ZAD zinc finger protein Kipferl guides Rhino to piRNA clusters. Elife. 11, e80067.
- Czech B., Malone C.D., Zhou R., Stark A., Schlingeheyde C., Dus M., Perrimon N., Kellis M., Wohlschlegel J.A., Sachidanandam R., Hannon G.J., Brennecke J. (2008) An endogenous small interfering RNA pathway in Drosophila. Nature. 453(7196), 798–802.
- Flutre T., Duprat E., Feuillet C., Quesneville H. (2011) Considering transposable element diversification in de novo annotation approaches. PLoS One. 6(1), e16526.
- Benson D.A., Cavanaugh M., Clark K., Karsch-Mizrachi I., Lipman D.J., Ostell J., Sayers E.W. (2012) GenBank. Nucl. Acids Res. 41, D36–D42.
- Larkin A., Marygold S.J., Antonazzo G., Attrill H., dos Santos G., Garapati P.V., Goodman J.L., Gramates L.S., Millburn G., Strelets V.B., Tabone C.J., Thurmond J., FlyBase Consortium (2021) FlyBase: updates to the Drosophila melanogaster knowledge base. Nucl. Acids Res. 49, D899–D907.
- Rech G.E. (2021) Fasta sequences for the Drosophila melanogaster manually curated transposable elements (MCTE) library. https://www.lareferencia.info/vufind/Record/ES_a77af0688d4516b156d77549ef83f0e4#core
- Simmons M.J., Thorp M.W., Buschette J.T., Peterson K., Cross E.W., Bjorklund E.L. (2010) Maternal impairment of transposon regulation in Drosophila melanogaster by mutations in the genes aubergine, piwi and Suppressor of variegation 205. Genet. Res. 92(4), 261–272.
- Васильева Л.А., Антоненко О.В., Захаров И.К. (2011) Роль мобильных генетических элементов в геноме Drosophila melanogaster. Вавиловский журн. генетики и селекции. 15(2), 225–260.
- Rech G.E., Radío S., Guirao-Rico S., Aguilera L., Horvath V., Green L., Lindstadt H., Jamilloux V., Quesneville H., González J. (2022) Population-scale long-read sequencing uncovers transposable elements associated with gene expression variation and adaptive signatures in Drosophila. Nat. Commun. 13(1), 1948.
- Mohamed M., Dang N.T., Ogyama Y., Burlet N., Mugat B., Boulesteix M., Mérel V, Veber P., Salces-Ortiz J., Severac D., Pélisson A., Vieira C., Sabot F., Fablet M., Chambeyron S. (2020) A transposon story: from TE content to TE dynamic invasion of Drosophila genomes using the single-molecule sequencing technology from Oxford nanopore. Cells. 9(8), 1776.
- Rang F.J., Kloosterman W.P., de Ridder J. (2018) From squiggle to basepair: computational approaches for improving nanopore sequencing read accuracy. Genome Biol. 19(1), 90.
- Li H. (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint arXiv:1303.3997.
- Li H. (2018) Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 34(18), 3094–3100.
- Sedlazeck F.J., Rescheneder P., Smolka M., Fang H., Nattestad M., von Haeseler A., Schatz M.C. (2018) Accurate detection of complex structural variations using single-molecule sequencing. Nat. Methods. 15(6), 461–468.
- Kiełbasa S.M., Wan R., Sato K., Horton P., Frith M.C. (2011) Adaptive seeds tame genomic sequence comparison. Genome Res. 21(3), 487–493.
- Chaisson M.J., Tesler G. (2012) Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory. BMC Bioinformatics. 13(1), 238.
- Xiao C.L., Chen Y., Xie S.Q., Chen K.N., Wang Y., Han Y., Luo F., Xie Z. (2017) MECAT: fast mapping, error correction, and de novo assembly for single-molecule sequencing reads. Nat. Methods. 14(11), 1072–1074.
- Лавренов А.Р., Нефедова Л.Н., Романова Н.И., Ким А.И. (2014) Экспрессия генов семейства hp1 и их возможная роль в формировании фенотипа flamenco у D. melanogaster. Биохимия. 79(11), 1554–1560.
- Кукушкина И.В., Махновский П.А., Нефедова Л.Н., Балакирева Е.А., Романова Н.И., Кузьмин И.В., Лавренов А.Р., Ким А.И. (2020) Исследование фертильности линии Drosophila melanogaster MS с нарушением контроля транспозиции мобильного элемента gypsy. Молекуляр. биология. 54(3), 412–425.
- Kim A.I., Lyubomirskaya N.V., Belyaeva E.S., Shostack N.G., Ilyin Y.V. (1994) The introduction of a transpositionally active copy of retrotransposon GYPSY into the stable strain of Drosophila melanogaster causes genetic instability. Mol. Gen. Genet. MGG. 242(4), 472–477.
- Кукушкина И.В., Махновский П.А., Нефедова Л.Н., Миляева П.А., Кузьмин И.В., Лавренов А.Р., Ким А.И. (2020) Анализ транскриптома линий Drosophila melanogaster с нарушением контроля транспозиции ретротранспозона gypsy. Генетика. 56(5), 550–560.
- Andrews S., Krueger F., Segonds-Pichon A., Biggins L., Krueger C., Wingett S. (2010) FastQC. A quality control tool for high throughput sequence data. 370.
- Bolger A.M., Lohse M., Usadel B. (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 30(15), 2114–2120.
- Kim D., Pertea G., Trapnell C., Pimentel H., Kelley R., Salzberg S.L. (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14(4), 1–13.
- Anders S., Pyl P.T., Huber W. (2015) HTSeq – a Python framework to work with high-throughput sequencing data. Bioinformatics. 31(2), 166–169.
- Anders S., Huber W. (2012) Differential expression of RNA-Seq data at the gene level–the DESeq package. Eur. Mol. Biol. Lab. (EMBL), Heidelberg. 10, f1000research.
- Koren S., Walenz B.P., Berlin K., Miller J.R., Bergman N.H., Phillippy A.M. (2017) Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27(5), 722–736.
- Thorvaldsdottir H., Robinson J.T., Mesirov J.P. (2013) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform. 14(2), 178–192.
- Cooley M.B., Yoder J.I., Goldsbrough A.P., Still D.W. (1996) Site-selected insertional mutagenesis of tomato with maizeAc and Ds elements. Mol. Gen. Genet. MGG. 252(1–2), 184–194.
- Kay M., Hojati Z., Heidari M., Bazi Z., Korbekandi H. (2015) Effects of disruption of the nucleotide pattern in CRID element and Kozak sequence of interferon β on mRNA stability and protein production. Autoimmunity. 48(5), 336–343.
- Ким А.И., Беляева Е.С., Ларкина З.Г., Асланян М.М. (1989) Генетическая нестабильность и транспозиции мобильного элемента МДГ4 в мутаторной линии Drosophila melanogaster. Генетика. 25(10), 1747–1756.
- Prud´homme N., Gans M., Masson M., Terzian C., Bucheton A. (1995) Flamenco, a gene controlling the gypsy retrovirus of Drosophila melanogaster. Genetics. 139(2), 697–711.
- Leblanc P. (1997) Invertebrate retroviruses: ZAM a new candidate in D. melanogaster. EMBO J. 16(24), 7521–7531.
- Czech B., Preall J.B., McGinn J., Hannon G.J. (2013) A transcriptome-wide RNAi screen in the Drosophila ovary reveals factors of the germline piRNA pathway. Mol. Cell. 50(5), 749–761.
- Gracheva E., Dus M., Elgin S.C. (2009) Drosophila RISC component VIG and its homolog Vig2 impact heterochromatin formation. PLoS One. 4(7), e6182.
- Carrera P., Johnstone O., Nakamura A., Casanova J., Jackle H., Lasko P. (2000) Vasa mediates translation through interaction with a Drosophila yIF2 homolog. Mol. Cell. 5, 181–187.
- Jankowsky E. (2011) RNA helicases at work: binding and rearranging. Trends Biochem. Sci. 36(1), 19–29.
- Styhler S., Nakamura A., Swan A., Suter B., Lasko P. (1998) vasa is required for Gurken accumulation in the oocyte, and is involved in oocyte differentiation and germline cyst development. Development. 125, 1569–1578.
- Tomancak P., Guichet A., Zavorszky P., Ephrussi A. (1998) Oocyte polarity depends on regulation of gurken by Vasa. Development. 125, 1723–1732.
- Pek J.W., Kai T. (2011) A role for Vasa in regulating mitotic chromosome condensation in Drosophila. Curr. Biol. 21, 39–44.
- Munafò M., Manelli V., Falconio F.A., Sawle A., Kneuss E., Eastwood E.L., Seah J.E., Czech B., Hannon G.J. (2019) Daedalus and Gasz recruit Armitage to mitochondria, bringing piRNA precursors to the biogenesis machinery. Genes Dev. 33(13–14), 844–856.
- Stoye J.P. (2001) Endogenous retroviruses: still active after all these years? Curr. Biol. 11(22), R914–R916.
- Kaer K., Speek M. (2012) Intronic retroelements: Not just “speed bumps” for RNA polymerase II. Mobile Genetic Elements. 2(3), 154–157.
- Saze H. (2018) Epigenetic regulation of intragenic transposable elements: a two-edged sword. J. Biochem. 164(5), 323–328.
- Rogers S.O., Bendich A.J. (2023) Introns are derived from transposons. bioRxiv, 2023-02.
- Ewing A.D., Smits N., Sanchez-Luque F.J., Faivre J., Brennan P.M., Richardson S.R., Cheetham S.W., Faulkner G.J. (2020) Nanopore sequencing enables comprehensive transposable element epigenomic profiling. Mol. Cell. 80(5), 915–928.e5.
- Dietzl G., Chen D., Schnorrer F., Su K.C., Barinova Y., Fellner M., Gasser B., Kinsey K., Oppel S., Scheiblauer S., Couto A., Marra V., Keleman K., Dickson B.J. (2007) A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature. 448(7150), 151–156.
Supplementary files
