Increasing the Pulse Energy of a Radially Converging Low-Energy High-Current Electron Beam
- Authors: Kiziridi P.P.1, Ozur G.E.1
- 
							Affiliations: 
							- Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences
 
- Issue: No 4 (2023)
- Pages: 84-88
- Section: ОБЩАЯ ЭКСПЕРИМЕНТАЛЬНАЯ ТЕХНИКА
- URL: https://ruspoj.com/0032-8162/article/view/670477
- DOI: https://doi.org/10.31857/S0032816223030072
- EDN: https://elibrary.ru/IRXYDZ
- ID: 670477
Cite item
Abstract
The energy characteristics of a high-current electron gun with a radially converging beam have been studied. The cathode unit of the gun consisted of one or two ring sections with an inner diameter of 8 cm, each of which included 18 resistively decoupled arc plasma sources initiated by discharges over the dielectric surface. It is shown that electrostatic shielding that prevents the liberation of electrons and ultraviolet radiation from cathode and anode plasmas to the space behind the cathode decreases the probability of the breakdown development along the resistors of arc plasma sources and increases the beam pulse energy released in the anode approximately two times. In the case of two-sectioned cathode unit, the width of the beam autograph on the anode (melting trace) was ~7 cm at an axial distance between the centers of the sections of 4 cm.
About the authors
P. P. Kiziridi
Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences
														Email: kiziridi_pavel@mail.ru
				                					                																			                												                								634055, Tomsk, Russia						
G. E. Ozur
Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences
							Author for correspondence.
							Email: ozur@lve.hcei.tsc.ru
				                					                																			                												                								634055, Tomsk, Russia						
References
- Abdullin E.N., Ivanov N.G., Losev V.F., Morozov A.V. // Laser and Particle Beams. 2013. V. 31. P. 1. https://doi.org/10.1017/S026303461300075X
- Бугаев А.С., Климов А.И., Коваль Н.Н., Кошелев В.И., Сочугов Н.С., Щанин П.М. Препринт ТНЦ СО АН СССР № 25. Томск, 1991. С. 21.
- Kovalchuk B.M., Polevin S.D., Tsygankov R.V., Zherlitsyn A.A. // IEEE Transactions on Plasma Science. 2010. V. 38. Issue 10. P. 2819. https://doi.org/10.1109/TPS.2010.2060367
- Engelko V.I., Kuznetsov V.S., Mueller G. // J. Applied Physics. 2009. V. 105. P. 023305. https://doi.org/10.1063/1.2996286
- Энгелько В.И., Ткаченко К.И., Русанов А.Е., Биржевой Г.А. // Вопросы атомной науки и техники. Серия: Ядерно-реакторные константы. 2015. № 4. С. 93.
- Кизириди П.П., Озур Г.Е. // ПТЭ. 2022. № 6. С. 61. https://doi.org/10.31857/S0032816222060143
- Кизириди П.П., Озур Г.Е. // Письма в ЖТФ. 2020. Т. 46. № 15. С. 47. https://doi.org/10.21883/PJTF.2020.15.49750.18364
- Кизириди П.П., Озур Г.Е. // ЖТФ. 2022. Т. 92. № 6. С. 876. https://doi.org/10.21883/JTF.2022.06.52518.316-21
- Озур Г.Е., Проскуровский Д.И. // Физика плазмы. 2018. Т. 44. № 1. С. 21. https://doi.org/10.7868/S0367292118010146
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					



