Abstract
The patterns of the wave of thermal interaction of water drops in a high-temperature molten lead, are studied. Due to the boiling of water on the surface of molten lead, both liquids (phases) are separated by a vapor film. A one-dimensional model of interacting and interpenetrating continuums is used, which describes the dynamics of each fluid by introducing a special field characterized by its own velocity, temperature, and volume fraction. Wave velocity is determined by the equality of phase velocities and temperatures in the Chapman-Jouguet plane. The parameters at the pressure peak are calculated from the conditions at the discontinuity which are the boundary conditions for integrating the conservation equations in the zone of interaction of water droplets with the melt. The resulting structure of the thermal detonation wave is characterized by the fact that the maximum pressure is at some distance from the shock wave.