Abstract
In this paper, for the first time, a two-dimensional dynamic contact problem on the action of a deformable stamp on a quarter of the plane of a multilayer medium is strictly mathematically investigated. In contrast to the case of an absolutely solid stamp, a deformable stamp introduces additional features, consisting in the possibility of the occurrence of discrete resonances predicted by academician I.I. Vorovich. The paper shows that the use of a method based on the use of block elements makes it possible to obtain an equation describing resonant frequencies. To study contact problems with a deformable stamp made of materials of complex rheology, including smart materials, it is proposed in the paper to first conduct a study for the case of a deformable stamp made of a material of simple rheology described by Helmholtz equations. Solutions of boundary value problems for stamps of complex rheology, after that, are represented by a combination of solutions of boundary value problems for stamps of simple rheology.