Deformation of a thin circular plate fixed along the contour to the substrate

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

In the approximation of the Foppl–von Karman model, the problem of deformation of a circular plate coupled to a massive substrate along a contour coinciding with the boundary of a hole in the substrate under the action of a transverse load is solved. Boundary conditions of two types were considered: rigid and generalized elastic embedding. The solution is obtained in two ways: by decomposing into power series the transverse displacements and longitudinal forces represented in a cylindrical coordinate system, as well as by numerical integration of the Foppl–von Karman equations, with successive refinement of boundary conditions, similar to the “shooting method”. Expressions for the displacement components of a circular plate are obtained. The role played by the compliance of the substrate in changing the profile shape of the circular plate, the acting longitudinal forces and bending moments has been revealed. A comparison with other solutions has been made. The fields of applicability of the methods are investigated.

Texto integral

Acesso é fechado

Sobre autores

D. Gandilyan

Ishlinsky Institute for Problems in Mechanics of the RAS

Autor responsável pela correspondência
Email: david.ghandilyan@mail.ru
Rússia, Moscow

K. Ustinov

Ishlinsky Institute for Problems in Mechanics of the RAS

Email: ustinov@ipmnet.ru
Rússia, Moscow

Bibliografia

  1. Nanofabrication: Nanolithography Techniques and Their Applications / ed. by De Teresa J.-M. Bristol, England: IOP Pub. Ltd., 2020. 450 p. https://doi.org/10.1088/978-0-7503-2608-7
  2. Salashchenko N.N., Chkhalo N.I., Dyuzhev N.A. Maskless X-ray lithography based on MOEMS and microfocus x-ray tubes // Surface. X-ray, Synchrotron and Neutron Studies, 2018, no. 10, pp. 10–20. (in Russian) https://doi.org/10.1134/S0207352818100165
  3. Silverman J.P. Challenges and progress in X-ray lithography // J. of Vacuum Sci.&Technol. B, 1998, vol. 16, iss. 6, pp. 31–37. https://doi.org/10.1116/1.590452
  4. Vladimirsky Y., Bourdillon A. et al. Demagnification in proximity X-ray lithography and extensibility to 25 nm by optimizing Fresnel diffraction // J. of Phys. D: Appl. Phys., 1999, vol. 32, iss. 22, pp. 114–118. https://doi.org/10.1088/0022-3727/32/22/102
  5. Cotterell B., Chen Z. Buckling and cracking of thin film on compliant substrates under compression // Int. J. of Fracture, 2000, vol. 104, iss. 2, pp. 169–179. https://doi.org/10.1023/A:1007628800620
  6. Yu H.-H., Hutchinson J.W. Influence of substrate compliance on buckling delamination of thin films // Int. J. of Fracture, 2002, vol. 113, pp. 39–55. https://doi.org/10.1023/A:1013790232359
  7. Li S., Wang J., Thouless M.D. The effects of shear on delamination in layered materials // J. of Mech.&Phys. of Solids, 2004, vol. 52, iss. 1, pp. 193–214. https://doi.org/10.1016/S0022-5096(03)00070-X
  8. Andrews M., Massabo R., Cox B. Elastic interaction of multiple delaminations in plates subject to cylindrical bending // Int. J. of Solids&Struct., 2006, vol. 43, iss. 5, pp. 855–886. https://doi.org/10.1016/j.ijsolstr.2005.04.025
  9. Andrews M., Massabo R. The effects of shear and near tip deformations on energy release rate and mode mixity of edge-cracked orthotropic layers // Engng. Fracture Mech., 2007, vol. 74, iss. 17, pp. 2700–2720. https://doi.org/10.1016/j.engfracmech.2007.01.013
  10. Ustinov K.B. On shear separation of a thin strip from the half-plane // Mech. of Solids, 2014, vol. 49, iss. 6, pp. 713–724. https://doi.org/10.3103/S0025654414060132
  11. Ustinov K.B. On separation of a layer from the half-plane: elastic fixation conditions for a plate equivalent to the layer // Mech. of Solids, 2015, vol. 50, iss. 1. pp. 62–80. https://doi.org/10.3103/S0025654415010070
  12. Begley M.R., Hutchinson J.W. The Mechanics and Reliability of Films, Multilayers and Coatings. Cambridge: Univ. Press, 2017. 288 p. https://doi.org/10.1017/9781316443606
  13. Thouless M.D. Shear forces, root rotations, phase angles and delamination of layered materials // Engng. Fracture Mech., 2018, vol. 191, pp. 153–167. https://doi.org/10.1016/j.engfracmech.2018.01.033
  14. Barbieri L., Massabo R., Berggreen C. The effects of shear and near tip deformations on interface fracture of symmetric sandwich beams // Engng. Fracture Mech., 2018, vol. 201, pp. 298–321. https://doi.org/10.1016/j.engfracmech.2018.06.039
  15. Massabo R., Ustinov K.B., Barbieri L., Berggreen C. Fracture mechanics solutions for interfacial cracks between compressible thin layers and substrates // Coatings, 2019, vol. 9, iss. 3, pp. 152. https://doi.org/10.3390/coatings9030152
  16. Ustinov K.B. On semi-infinite interface crack in bi-material elastic layer // Europ. J. of Mech. A/Solids, 2019, vol. 75, pp. 56–69. https://doi.org/10.1016/j.euromechsol.2019.01.013
  17. Monetto I., Massabo R. An analytical beam model for the evaluation of crack tip root rotations and displacements in orthotropic specimens // Frattura ed Integrita Strutt., 2020, vol. 14, no. 53, pp. 372–393. https://doi.org/10.3221/IGF-ESIS.53.29
  18. Ustinov K., Massabo R. On elastic clamping boundary conditions in plate models describing detaching bilayers // Int. J. of Solids&Struct., 2022, vol. 248, pp. 111600. http://doi.org/10.1016/j.ijsolstr.2022.111600
  19. Ustinov K.B. On influence of substrate compliance on delamination and buckling of coatings // Engng. Failure Anal., 2015, vol. 47, pp. 338–344. https://doi.org/10.1016/j.engfailanal.2013.09.022
  20. Ustinov K.B., Gandilyan D.V. On the boundary conditions for a thin circular plate conjugated to a massive body // Vestn. of Samara Univ.. Nat. Sci. Ser., 2024, vol. 30, no. 1, pp. 50–63. (in Russian) https://doi.org/10.18287/2541-7525-2024-30-1-50-63
  21. Gorman D.J. Free vibration analysis of Mindlin plates with uniform elastic edge support by the superposition method // J. of Sound&Vibr., 1997, vol. 207, pp. 335–350.
  22. Du J.T., Li W.L., Jiu G.J., Yang T.J., Liu Z.G. An analytical method for the in-plane vibration analysis of rectangular plates with elastically restrained edges // J. of Sound&Vibr., 2009, vol. 306, pp. 908–927.
  23. Zhang H., Li W.L. Vibrations of rectangular plates with arbitrary non-uniform elastic edge restraints // J. of Sound&Vibr., 2009, vol. 326, pp. 221–231.
  24. Dal H., Morque O.K. Vibrations of elastically restrained rectangular plates // Sci. Re.&Essays, 2011, vol. 6, no. 31, pp. 6811–6816.
  25. Zhang H., Shi D., Wang Q. An improved Fourier series solution for free vibration analysis of the moderately thick laminated composite rectangular plate with non-uniform boundary conditions // Int. J. of Mech. Sci., 2017, vol. 121, pp. 1–20.
  26. Gorman D.J. Free vibration and buckling of in-plane loaded plates with rotational edge support // J. of Sound&Vibr., 2000, vol. 225, pp. 755–773.
  27. Miletić I., Miletić M. The buckling analysis of a rectangular plate elastically clamped along the longitudinal edges // Appl. Engng. Lett., 2016, vol. 1, no. 1, pp. 24–28.
  28. Miletić I., Miletić M., Milojević S., Ulewicz R., Nikolić R. The buckling analysis of an elastically clamped rectangular plate // Mobil.&Vehicle Mech., 2020, vol. 48, no. 1, pp. 37–46.
  29. Chen J., Jin G., Liu Z. Free vibration analysis if circular cylindrical shell with non-uniform elastic boundary conditions // Int. J. of Mech. Sci., 2013, vol. 74, pp. 120–132.
  30. Karakosyan R.M., Stepanyan S.P. Non-classical problem of bend of an orthotropic annular plate of variable thickness with an elastically clamped support // Proc. of the Yerevan State Univ., 2017, vol. 51, no. 2, pp. 168–176.
  31. Timoshenko S.P., Woinowsky-Krieger S. Theory of Plates and Shells. McGraw-Hill, 1959. 580 p.
  32. Way S. Bending of circular plates with large deflection // Trans. ASME, 1934, vol. 56, pp. 627–633.
  33. Lychev S.A., Digilov A.V., Pivovaroff N.A. Bending of a circular disk: from cylinder to ultrathin membrane // Vestn. of Samara Univ.. Natural Sci. Ser., 2023, vol. 29, no. 4, pp. 77–105. (in Russian) https://doi.org/10.18287/2541-7525-2023-29-4-77-105 https://www.elibrary.ru/blerei
  34. Galanin M.P., Savenkov E.B. Methods of Numerical Analysis of Mathematical Models. Moscow: BMSTU Pub., 2010. 590 p. (in Russian)
  35. Lychev S., Digilov A., Demin G., Gusev E., Kushnarev I., Djuzhev N., Bespalov V. Deformations of single-crystal silicon circular plate: Theory and experiment // Symm. MDPI, 2024, vol. 16, no. 2, pp. 137–163. https://doi.org/10.3390/sym16020137
  36. Lychev S., Digilov A. Incompatible deformations in hyperelastic plates on influence of substrate compliance on delamination and buckling of coatings // Math. MDPI, 2024, vol. 12, no. 4, pp. 596–616. http://doi.org/10.1016/j.engfailanal.2013.09.022
  37. Lychev S.A. Incompatible deformations of flexible plates // Sci. Notes of Kazan Univ. Ser. Phys.&Math. Sci., 2023, vol. 165, no. 4, pp. 361–388. (in Russian) https://doi.org/10.26907/2541-7746.2023.4.361-388
  38. Dedkova A.A., Glagolev P.Yu., Gusev E.E., Dyuzhev N.A., Kireev V.Yu., Lychev S.A., Tovarnov D.A. Features of deformation of round thin-film membranes and experimental determination of their effective // J. of Tech. Phys., 2021, vol. 91, no. 10, pp. 1454–1465. (in Russian) https://doi.org/10.21883/JTF.2021.10.51357.121-21

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. The coordinate system under consideration

Baixar (125KB)
3. Fig. 2. Configuration of deformation of a circular plate: a) distribution of forces and moment, b) distribution of displacement components

Baixar (138KB)
4. Fig. 3. Displacement component with (a) and without (b) compliance

Baixar (174KB)
5. Fig. 4. Values of the displacement derivative with (a) and without (b) compliance

Baixar (156KB)
6. Fig. 5. Selected neighborhood of initial conditions for finding the optimal solution to the problem

Baixar (240KB)
7. Fig. 6. Interpolation and extrapolation from known initial data for different values of transverse load intensity p

Baixar (219KB)
8. Fig. 7. Graphs of the displacement component with (a) and without (b) compliance coefficients at

Baixar (238KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025