Lithium, sodium and strontium fluoroglutaratouranylates: structure and some properties

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using X-ray diffraction analysis, the structure of the crystals of Li(UO2)2(C5H6O4)2F⋅6H2O (I), NaUO2(C5H6O4)F⋅4H2O (II) and Sr(UO2)2(C5H6O4)2F2⋅8H2O (III) was studied for the first time. The uranium-containing structural units in crystals of I are 1D complexes [UO2(C5H6O4)F0.5(H2O)]0.5– with the crystal chemical formula AQ02M20.5M1, where A = UO22+, Q02 = C5H6O42–, M2= F, M1 = H2O, and in II and III, 1D complexes of the same composition and structure [UO2(C5H6O4)F] with the crystal chemical formula AQ02M2. In all compounds, the U(VI) atoms implement hexagonal-bipyramidal coordination, forming coordination polyhedra UO2FO5 (I) and UO2F2O4 (II and III). It was found that the long-characterized uranyl fluoroglutarate {UJUBEG}, for which the composition [UO25H6O4)F]⋅2H2O was erroneously indicated, contradicting the principle of electrical neutrality, should be considered as (Н3O)[UO25H6O4)F]⋅H2O.

Full Text

Restricted Access

About the authors

V. N. Serezhkin

Samara National Research University

Author for correspondence.
Email: serezhkin@samsu.ru
Russian Federation, Samara

М. S. Grigoriev

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: serezhkin@samsu.ru
Russian Federation, Moscow

М. V. Sukacheva

Samara National Research University

Email: serezhkin@samsu.ru
Russian Federation, Samara

D. V. Pushkin

Samara National Research University

Email: serezhkin@samsu.ru
Russian Federation, Samara

L. B. Serezhkina

Samara National Research University

Email: serezhkin@samsu.ru
Russian Federation, Samara

References

  1. Сережкин В.Н., Пушкин Д.В., Сережкина Л.Б. // Радиохимия. 2022. T. 64. № 4. C. 359. https://doi.org/10.31857/S0033831122040037
  2. Chernyaev I.I. Complex Compounds of Uranium. New York: Devy, 1966.
  3. Zachariasen W.H. // Acta Crystallogr. 1948. Vol. 1. P. 277.
  4. Kim J.-Y., Norquist A.J., O’Hare D. // Dalton Trans. 2003. P. 2813. https://doi.org/10.1039/B306733P
  5. Deifel N.P., Holman K.T., Cahill C.L. // Chem. Commun. 2008. P. 6037.
  6. Inorganic Crystal Structure Database. Gmelin-Institut für Anorganische Chemie & FIC Karlsruhe, 2022.
  7. Cambridge Structural Database System. Cambridge Crystallographic Data Centre. 2022.
  8. Сережкин В.Н., Григорьев М.С., Сукачева М.В., Сережкина Л.Б. // ЖФХ. 2023. Т. 97. № 4. C. 535. https://doi.org/10.31857/S0044453723040283
  9. Serezhkin V.N., Vologzhanina A.V., Serezhkina L.B., Smirnova E.S., Grachova E.V., Ostrova P.V., Antipin M. Yu. // Acta Crystallogr., Sect. B. 2009. Vol. 65. Part 1. P. 45. https://doi.org/10.1107/S0108768108038846
  10. SAINT-Plus (Version 7.68). Madison, Wisconsin (USA): Bruker AXS, 2007.
  11. Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Crystallogr. 2015. Vol. 48. Part 1. P. 3.
  12. Sheldrick G.M. TWINABS. Madison, Wisconsin (USA): Bruker AXS, 2008.
  13. Sheldrick G.M. // Acta Crystallogr., Sect. A. 2015. Vol. 71. № 1. P. 3.
  14. Sheldrick G.M. // Acta Crystallogr., Sect. C. 2015. Vol. 71 N1. P. 3. https://doi.org/10.1107/S2053229614024218
  15. Cережкин В.Н., Михайлов Ю.Н., Буслаев Ю.А. // ЖНХ. 1997. Т. 42. № 12. С. 2036.
  16. Novikov S.A., Serezhkina L.B., Grigoriev M.S., Serezhkin V.N. // Polyhedron. 2018. Vol. 141. P. 147. https://doi.org/10.1016/j.poly.2017.11.031
  17. Сережкина Л.Б., Григорьев М.С., Рогалева Е.Ф., Сережкин В.Н. // Радиохимия. 2021. Т. 63. № . 4. С. 337. https://doi.org/10.31857/S0033831121040043
  18. Serezhkin V.N., Yu Lian, Savchenkov A.V. // Cryst. Growth Des. 2022. Vol. 22. P. 6717.
  19. Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. Hoboken, New Jersey: Wiley, 2009. Part B. 419 p.
  20. Arjunan V., Marchewka M.K., Raj Arushma, Yang Haifeng, Mohan S. // Spectrochim. Acta. Part A: Mol. Biomol. Spectrosc. 2015. Vol. 135. P. 540.
  21. Tarakeshwar P., Manogaran S. // J. Mol. Struct. (Theochem.). 1996. Vol. 362. P. 77. https://doi.org/10.1016/0166-1280(95)04375-6

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependence of the volume of VVDP of U(VI) atoms in the UObFc (I) and UObClc (II) complexes on λ, where λ = c/(b + c). The regression line for UObFc corresponds to equation (2). For UObClc, the data from [17] were used.

Download (62KB)
3. Fig. 2. A fragment of the [UO2(C5H6O4)F0.5(H2O)]0.5– ribbon with the crystal chemical formula AQ02M20.5M1 in structure I. To simplify the figure, only the H atoms of water molecules are indicated. For the U atoms at the right end of the fragment, the projection of the CP — a hexagonal bipyramid (top) and the dual VDP — a hexagonal prism (bottom) are indicated.

Download (146KB)
4. Fig. 3. A fragment of the [UO2(C5H6O4)F]– ribbon with the crystal chemical formula AQ02M2 in structure II or III. The H atoms of the glutarate ions are excluded to simplify the drawing. For the U atoms at the right end of the fragment, the projection of the CP – a hexagonal bipyramid (top) and the dual VDP – a hexagonal prism (bottom) is indicated.

Download (133KB)

Copyright (c) 2024 Russian Academy of Sciences