Preparation of high-labeled graphene oxide by tritium thermal activation method for application in the betavoltaic cell of a nuclear battery

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Possibility of tritium introduction into graphene oxide (GO) by tritium thermal activation method was demonstrated. It has been established that, in order to obtain the highest possible specific radioactivity, thin films of GO with a thickness of 5.6 mg/m2 must be treated with tritium atoms. The experiment provided at 77 K showed a number of advantages. Under these conditions, the specific activity of [3H]GO of 2.6 Ci/mg was reached when calculated by the mass of the initial GO (0.7 Ci/mg if purified to remove the labile tritium). Specific energy release in [3H]GO with such specific activity is 22.3 W/kg, which is enough for its application as a component of an atomic battery.

Full Text

Restricted Access

About the authors

G. A. Badun

Moscow State University

Author for correspondence.
Email: badunga@my.msu.ru

Faculty of Chemistry

Russian Federation, Moscow

V. A. Bunyaev

Moscow State University; Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Email: badunga@my.msu.ru

Faculty of Chemistry

Russian Federation, Moscow; Moscow

M. G. Chernysheva

Moscow State University

Email: badunga@my.msu.ru

Faculty of Chemistry

Russian Federation, Moscow

References

  1. Krasnov A.A., Legotin S.A. // Instrum. Exp. Tech. 2020. Vol. 63. P. 437–452.
  2. Wagner D.L., Novog D.R., Lapierre R.R. // J. Appl. Phys. 2020. Vol. 127. Article 244303.
  3. Zhou C., Zhang J., Wang X., Yang Y., Xu P., Li P. et al. // ECS J. Solid State Sci. Technol. 2021. Vol. 10. Article 027005.
  4. Ershova N.A., Krasnov A.A., Legotin S.A., Rogozev B.I., Murashev V.N. IOP Conf. Ser. Mater. Sci. Eng. YEAR? Vol. 950. Article 012007.
  5. Sun W., Kherani N.P., Hirschman K.D., Gadeken L.L., Fauchet P.M. // Adv. Mater. 2005. Vol. 17. P. 1230–1233.
  6. Chang Y., Chen C., Liu P., Zhang J. // Sensors Actuators A Phys. 2014. Vol. 215. P. 17–21.
  7. Bormashov V.S., Troschiev S.Y., Tarelkin S.A., Volkov A.P., Teteruk D.V., Golovanov A.V. et al. // Diam. Relat. Mater. 2018. Vol. 84. P. 41–47.
  8. Цветков Л.А., Цветков С.Л., Пустовалов А.А., Вербецкий В.Н., Баранов Н.Н., Мандругин А.А. // Радиохимия. 2022. Т. 64. С. 281–288.
  9. Кузнецов Р.А., Бобровская К.С., Белобров И.С., Тихончев М.Ю., Новиков С.Г., Жуков А.В. // Радиохимия. 2022. Т. 64. С. 289–296.
  10. Sosnin L.J., Suvorov I.A., Tcheltsov A.N., Rogozev B.I., Gudov V.I. // Nucl. Instrum. Meth. Phys. Res. A. 1993. Vol. 334. P. 43–44.
  11. Wu M., Wang S., Ou Y., Wang W. // Appl. Radiat. Isot. 2018. Vol. 142. P. 22–27.
  12. Li H., Liu Y., Hu R., Yang Y., Wang G., Zhong Z., Luo S. // Appl. Radiat. Isot. 2012. Vol. 70. P. 2559–2563.
  13. Lei Y., Yang Y., Liu Y., Li H., Wang G., Hu R. et al. // Appl. Radiat. Isot. 2014. Vol. 90. P. 165–169.
  14. He H., Klinowski J., Forster M., Lerf A. // Chem. Phys. Lett. 1998. Vol. 287. P. 53–56.
  15. Badun G.A., Chernysheva M.G., Grigorieva A.V., Eremina E.A., Egorov A.V. // Radiochim. Acta. 2016. Vol. 104. P. 593–599.
  16. Bunyaev V.A., Chernysheva M.G., Popov A.G., Grigorieva A.V., Badun G.A. // Fullerenes, Nanotub. Carbon Nanostruct. 2020. Vol. 28. P. 191–195.
  17. Amirmazlaghani M., Rajabi A., Pour-mohammadi Z., Sehat, A.A. // Superlattices Microstruct. 2020. Vol. 145. Article 106602.
  18. Вербецкий В.Н., Митрохин С.В., Бадун Г.А., Евлашин С.А., Тепанов А.А., Буняев В.А. // Материаловедение. 2020. Т. 11. С. 8–11.
  19. Khmelnitsky R.A., Evlashin S.A., Martovitsky V.P., Pastchenko P.V., Dagesian S.A., Alekseev A.A. et al. // Cryst. Growth Des. 2016. Vol. 16. P. 1420–1427.
  20. Бадун Г.А., Чернышева М.Г. // Радиохимия. 2023. Т. 65. С. 158–171.
  21. Mouhat F., Coudert F.X., Bocquet M.L. // Nat. Commun. 2020. Vol. 11. Article 1566.
  22. Feicht P., Eigler S. // Chem. Nano Mat. 2018. Vol. 4. P. 244–252.
  23. Буняев В.А. Матер. Междунар. молодежного науч. форума «Ломоносов-2021»: Тез. докл. М., 12–13 апреля 2021 г. М.: МАКС Пресс, 2021. С. 783.
  24. Lian B., De Luca S., You Y., Alwarappan S., Yoshimura M., Sahajwalla V. et al. // Chem. Sci. 2018. Vol. 9. P. 5106–5111.
  25. Тясто З.А., Михалина Е.В., Чернышева М.Г., Бадун Г.А. // Радиохимия. 2007. Т. 49. С. 163–165.
  26. Li X., Lu J., Zheng R., Wang Y., Xu X., Liu Y. // J. Phys. D. Appl. Phys. 2020. Vol. 53. P. 1–6.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Typical structural fragment of OG.

Download (158KB)
3. Fig. 2. Dependence of the surface specific activity of GO deposited on silicon wafers, layer thickness 0.94 g/m2 (1), and the walls of the reaction vessel, layer thickness 0.0056 g/m2 (2), on the time of treatment with tritium atoms at room temperature.

Download (61KB)
4. Fig. 3. Dependence of OG activity on the time of treatment with tritium atoms at 77 K (1), 295 K (2), as well as the sum of the activity of [3H]OG and tritiated water in the experiment at 295 K (3).

Download (76KB)
5. Fig. 4. Dependence of the activity of [3H]OG after removal of the labile label on the time of treatment with tritium atoms at 77 K (1) and 295 K (2).

Download (67KB)

Copyright (c) 2024 Russian Academy of Sciences