Study of the chemical stability of Sr0.5Zr2(PO4)3 phosphate with a cosnarite structure in various environments

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Samples of ceramics based on Sr0.5Zr2(PO4)3 phosphate with the structure of the kosnarite mineral (NaZr2(PO4)3, NZP) were obtained by electric pulse plasma sintering. Submicron phosphate powders with particle sizes less than 1 μm were obtained by the sol-gel method. Powders and ceramics have a single-phase NZP structure. The relative density of the ceramics was 97.6%. The chemical stability of the obtained ceramics was studied in static mode at 90°C in distilled and mineral water and in acidic and alkaline environments. The minimum achieved leaching rates were ~10-4-10-6 g/(cm2 day). The in uence of the contact environment on the rate and mechanism of Sr leaching from Sr0.5Zr2(PO4)3 ceramic samples within 42 days was studied. It has been shown that Sr leaching occurs due to the dissolution of the surface layer of ceramics when tested in distilled water and in mineral water (up to 7 days) and due to Sr leaching from the open ceramic surface after 7 days of testing in mineral water.

作者简介

L. Alekseeva

Lobachevsky State University

Email: golovkina_lyudmila@mail.ru

A. Nokhrin

Lobachevsky State University

A. Orlova

Lobachevsky State University

M. Boldin

Lobachevsky State University

A. Voronin

Lobachevsky State University

A. Murashov

Lobachevsky State University

V. Chuvil'deev

Lobachevsky State University

参考

  1. Ojovan M.I., Lee W.E. // Metall. Mater. Trans. A. 2011. Vol. 42. P. 837-851.
  2. Stefanovsky S.V., Yudintsev S.V., Gieré R., Lumpkin G.R. // Energy, Waste and Environment: Geological Society of London Special Publications. 2004. Vol. 236. P. 37-63.
  3. Montel J.M. // C. R. Geosci. 2011. Vol. 343. P. 230-236.
  4. Wen M.F., Yu B., Luo M., Chen J. // Adv. Mater. Res. 2012. Vol. 482-484. P. 58-61.
  5. Pilania R.K., Pathak N., Saini M., Sooraj K.P., Ranjan M., Dube C.L. // Ceram. Int. 2023.https://doi.org/10.1016/j.ceramint.2023.01.188.
  6. Zhang Y., Kong L., Ionescu M., Gregg D.J. // J. Eur. Ceram. Soc. 2022. Vol. 42, N 5. P. 1852-1876.
  7. Liu H., Wang H., Zhao J., Li J., Zhang X., Yang J., Zhu Y., Xie R., Zheng K., Huang H., Huo J. // Ceram. Int. 2022. Vol. 48, N 23. Part A. P. 34298-34307.
  8. Orlova A.I., Ojovan M.I. // Materials. 2019. Vol. 12, N 16. Article 2638. https://doi.org/10.3390/ma12162638
  9. Shichalin O.O., Belov A.A., Zavyalov A.P., Papynov E.K., Azon S.A., Fedorets A.N., Buravlev I.Yu., Balanov M.I., Tananaev I.G., Shi Y., Zhang Q., Niu M., Liu W., Portnyagin A.S. // Ceram. Int. 2022. Vol. 48, N 14. P. 19597-19605.
  10. Yang Y., Ning X., Luo S., Dong F., Li L. // Procedia Environ. Sci. 2016. Vol. 31. P. 330-334.
  11. Pet'kov V., Asabina E., Loshkarev V., Sukhanov M. // J. Nucl. Mater. 2016. Vol. 471. P. 122-128.
  12. Orlova A.I., Volgutov V.Yu., Mikhailov D.A., Bykov D.M., Skuratov V.A., Chuvil'deev V.N., Nokhrin A.V., Boldin M.S., Sakharov N.V. // J. Nucl. Mater. 2014. Vol. 446, N 1-3. P. 232-239.
  13. Wang J., Wei Y., Wang J., Zhang X., Wang Y., Li N. // Ceram. Int. 2022. Vol. 48, N 9. P. 12772-12778.
  14. Hashimoto C., Nakayama S. // J. Nucl. Mater. 2013. Vol. 440, N 1-3. P. 153-157.
  15. Hashimoto C., Nakajima Y., Terada T., Itoh K., Nakayama S. // J. Nucl. Mater. 2011. Vol. 408, N 3. P. 231-235.
  16. Bohre A., Shrivastava O.P. // J. Nucl. Mater. 2013. Vol. 433,. N 1-3. P. 486-493.
  17. Wei Y., Luo P., Wang J. Wen J., Zhan L., Zhang X., Yang S., Wang J. // J. Nucl. Mater. 2020. Vol. 540. Article 152366.
  18. Prekajski Đorđević M., Maletaškić J., Stanković N., Babić B., Yoshida K., Yano T., Matović B. // Ceram. Int. 2018. Vol. 44, N 2. P. 1771-1777.
  19. Matovic B., Prekajski Djordjevic M., Maletaskic J., Yoshida K., Yano T. // Energy Procedia. 2017. Vol. 131. P. 140-145.
  20. Ravikumar R., Gopal B. // J. Nucl. Mater. 2022. Vol. 558. Article 153388.
  21. Das P., Pathak N., Sanyal B., Dash S., Kadam R.M. // J. Alloys Compd. 2019. Vol. 810. Article 151906.
  22. Ravikumar R., Gopal B., Jena H. // J. Hazard. Mater. 2020. Vol. 394. Article 122552.
  23. Papynov E.K., Shichalin O.O., Buravlev I.Yu., Belov A.A., Portnyagin A.S., Fedorets A.N., Azarova Yu.A., Tananaev I.G., Sergienko V.I // Vacuum. 2020. Vol. 180. Article 109628.
  24. Alamo J., Roy R. // J. Mater. Sci. 1986. Vol. 21. P. 444-450.
  25. Orlova A.I. // J. Nucl. Mater. 2022. Vol. 559. Article 153407.
  26. Wang Y., Zhou Y., Song Y., Yang L., Liu F. // Ceram. Int. 2018. Vol. 44. P. 16698-16702.
  27. De Groot G.J., Van der Sloot H.A. // Stabilization and Solidification of Hazardous, Radioactive and Mixed Wastes / Eds. T.M. Gilliam, C.C. Wiles. Philadelphia: ASTM, 1992. Vol. 2. P. 149-170.
  28. Torras J., Buj I., Rovira M., de Pablo J. // J. Hazard. Mater. 2011. Vol. 186. P. 1954-1960.
  29. Xue Q., Wang P., Li J.-S., Zhang T.-T., Wang S.-Y. // Chemosphere. 2017. Vol. 166. P. 1-7. https://doi.org/10.1016/j.chemosphere.2016.09.059.
  30. Rahaman M.N. Ceramic Processing and Sintering. New York: Dekker, 2003. 875 p.
  31. Aloy A.S., Nikandrova M.V. // Radiochemistry. 2014. Vol. 56. P. 633-638. https://doi.org/10.1134/S1066362214060095
  32. Vinokurov S.E., Kulikova S.A., Myasoedov B.F. // J. Radioanal. Nucl. Chem. 2018. Vol. 318. P. 2401-2405.
  33. Papynov E.K., Belov A.A., Shichalin O.O., Buravlev I Yu., Azon S.A., Gridasova E.A., Parotkina Yu.A., Yagofarov V Yu., Drankov A.N., Golub A.V., Tananaev I.G. // Russ. J. Inorg. Chem. 2021. Vol. 66. P. 645-653. https://doi.org/10.1134/S0036023621050132
  34. Papynov E.K., Belov A.A., Shichalin O.O., Buravlev I Yu., Azon S.A., Golub A.V., Gerasimenko A.V., Parotkina Yu.А., Zavjalov A.P., Tananaev I.G., Sergienko V.I. // Nucl. Eng. Technol. 2021. Vol. 53, N 7. P. 2289-2294. https://doi.org/10.1016/j.net.2021.01.024
  35. Shi M., Luo F., Miao Y., Xu Z., Yuan B., Li Y., Huang W., Lu X. // J. Radioanal. Nucl. Chem. 2022. Vol. 331. P. 4099-4110. https://doi.org/10.1007/s10967-022-08465-0

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2023