Phosphorus concentration by sorbents based on polyacrylonitrile fiber modi ed with iron(III) hydroxide

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The resu lts of phosphorus recovery by sorbents of our production on the base of polyacrylonitrile ber modi ed with iron(III) hydroxide from solutions with di erent pH were presented. The phos phorus degree of recovery, the dynamic exchange capacity, and the total dynamic exchange capacity of sorbents for phosphorus have been established. The output curves of phosphorus sorption were constructed, and the results of a study of the sorption physicochemical regularities (isotherm and kinetics) were presented. The sorption e ciency of 32P and 33P from rainfall samples using sorbents based on polyacrylonitrile ber modi ed with iron(III) hydroxide was evaluated. Monitoring of 32P, 33P in atmospheric fallout of the Sevastopol region was carried out.

About the authors

M. A. Frolova

Sevastopol State University

N. A. Bezhin

Sevastopol State University

Email: nickbezhin@yandex.ru

O. N. Kozlovskaia

Sevastopol State University

I. G. Tananaev

Sevastopol State University;PA «Mayak»;Tananaev Institute of Chemistry FRC Kola Science Center RAS

References

  1. Bezhin N.A., Frolova M.A., Dovhyi I.I., Kozlovskaia O.N., Slizchenko E.V., Shibetskaia I.G., Khlystov V.A., Tokar' E.A., Tananaev I.G. // Water. 2022. Vol. 14, N 15. 2303.
  2. Bezhin N.A., Frolova M.A., Kozlovskaya O.N., Slizchenko E.V., Shibetskaya Yu.G., Tananaev I.G. // Processes. 2022. Vol. 10, N 10. 2010.
  3. Frolova M.A., Bezhin N.A., Slizchenko E.V., Kozlovskaia O.N., Tananaev I.G. // Materials. 2023. Vol. 16, N 5. 1791.
  4. Benitez-Nelson C. // Science. 2015. Vol. 348, N 6236. P. 759-760.
  5. Wang M., Audi G., Kondev F.G., Huang W. J., Naimi S., Xu X. // Chin. Phys. C. 2017. Vol. 41, N 3. P. 030003-1-030003-442.
  6. Marquez L., Costa N.L. // Nuovo Cimento. 1955. Vol. 2, N 5. P. 1038-1041.
  7. Lal D., Narasappaya N., Zutshi P.K. // Nucl. Phys. 1957. Vol. 3, N 1. P. 69-75.
  8. Baskaran M. Handbook of Environmental Isotope Geochemistry. Berlin: Springer, 2011. 951 p.
  9. Benitez-Nelson C.R., Buesseler K.O. // J. Geophys. Res. 1999. Vol. 104, N D9. P. 11745-11754.
  10. Сапожников Ю.А., Алиев Р.А., Калмыков С.Н. Радиоактивность окружающей среды. М.: БИНОМ. Лаборатория знаний, 2015. 289 с.
  11. Waser N.A.D., Bacon M.P. // Earth Planet. Sci. Lett. 1995. Vol. 133, N 1-2. P. 71-80.
  12. Nakanishi T., Kusakabe M., Aono T., Yamada M. // J. Radioanal. Nucl. Chem. 2009. Vol. 279, N 3. P. 769-776.
  13. Chen M., Yang Z., Zhang L., Qiu Y., Ma Q., Huang Y. // Acta Oceanol. Sin. 2013. Vol. 32, N 6. P. 18-25.
  14. Waser N.A., Fleer A.P., Hammar T.R., Buesseler K.O., Bacon M.P. // Nucl. Instrum. Meth. Phys. Res. A. 1994. Vol. 338. P. 560-567.
  15. Benitez-Nelson C.R., Buesseler K.O. // Anal. Chem. 1998. Vol. 70. P. 64-72.
  16. РД 52.10.738-2010. Массовая концентрация фосфатов в морских водах. М.: ОАО ФОП, 2010. 27 с.
  17. Zheng T.T., Sun Z.X., Yang X.F., Holmgrenet A. // Chem. Cent. J. 2012. Vol. 6. P. 26.
  18. Dong L., Wu C., Han Y., Pan S., Wang Z., Zhang G., Hou L., Gu P. // J. Radioanal. Nucl. Chem. 2021. Vol. 327. P. 1179-1190.
  19. Attallah M.F., Borai E.H., Allan K.F. // Radiochemistry. 2009. Vol. 51. P. 622-627.
  20. Dakroury G.A., Abo-Zahra Sh.F., Hassan H.S. // Arab. J. Chem. 2020. Vol. 13. P. 6510-6522.
  21. El-Shazly E.A.A., Dakroury G.A., Someda H.H. // J. Radioanal. Nucl. Chem. 2021. Vol. 330. P. 127-139.
  22. Plazinski W., Dziuba J., Rudzinski W. // Adsorption. 2013. Vol. 19. P. 1055-1064.
  23. Javadian H. // J. Ind. Eng. Chem. 2014. Vol. 20. P. 4233-4241.
  24. Lomas M.W., Burke A.L., Lomas D.A., Bell D.W., Shen C., Dyhrman S.T., Ammerman J.W. // Biogeoscience. 2010. Vol. 7, N 2. P. 695-710.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences