Preparation of suspension of nanodiamonds with immobilized scandium isotopes for in vivo research

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The conditions for preparing a suspension of detonation synthesis nanodiamonds (NDs) with immobilized scandium in solutions that meet the requirements to solutions for intravenous administration of radiopharmaceuticals (RPs) based on 44Sc and 47Sc are determined. The possibility of quantitatively binding scandium by ND samples in isotonic solutions with the required pH, containing a minimum amount of NDs, is demonstrated. The parameters of the Freundlich and Langmuir adsorption isotherms and ΔG of adsorption under optimal conditions for the most promising ND sample are determined. The conditions found for obtaining NDs with immobilized scandium isotopes will allow further in vivo researches.

Full Text

Restricted Access

About the authors

A. G. Kazakov

Vernadsky Institute of Geochemistry and Analytical Chemistry, RAS

Author for correspondence.
Email: adeptak92@mail.ru
Russian Federation, Moscow

D. V. Pavlova

Vernadsky Institute of Geochemistry and Analytical Chemistry, RAS; Mendeleev University of Chemical Technology of Russia

Email: adeptak92@mail.ru
Russian Federation, Moscow; Moscow

I. A. Ushakov

National Research Tomsk Polytechnic University

Email: adeptak92@mail.ru
Russian Federation, Tomsk

E. A. Nesterov

National Research Tomsk Polytechnic University

Email: adeptak92@mail.ru
Russian Federation, Tomsk

V. S. Skuridin

National Research Tomsk Polytechnic University

Email: adeptak92@mail.ru
Russian Federation, Tomsk

E. A. Odintsova

Bentonit Company

Email: adeptak92@mail.ru
Russian Federation, Moscow

S. E. Vinokurov

Vernadsky Institute of Geochemistry and Analytical Chemistry, RAS

Email: adeptak92@mail.ru
Russian Federation, Moscow

B. F. Myasoedov

Vernadsky Institute of Geochemistry and Analytical Chemistry, RAS; Interdepartmental Center for Analytical Research in Physics, Chemistry, and Biology, RAS

Email: adeptak92@mail.ru
Russian Federation, Moscow; Moscow

References

  1. Giri P.M., Banerjee A. // Cancers. 2023. Vol. 15. ID 2256.
  2. Elumalai K., Srinivasan S., Shanmugam A. // Biomed. Technol. 2024. Vol. 5. P. 109–122.
  3. Yun W.S., Kim J., Lim D.-K., Kim D.-H., Jeon S.I., Kim K. // Nanomaterials. 2023. Vol. 13. ID 2225.
  4. Kazakov A.G., Babenya J.S., Ekatova T.Y., Vinokurov S.E., Khvorostinin E.Y., Ushakov I.A., et al. // Radiochemistry. 2024. Vol. 66. № 2. P. 191–197.
  5. Kazakov A.G., Babenya J.S., Ekatova T.Y., Vinokurov S.E., Khvorostinin E.Y., Ushakov I.A., et al. // Radiochemistry. 2024. Vol. 66. N 2. P. 198–204.
  6. Kazakov A.G., Ekatova T.Y., Vinokurov S.E., Khvorostinin E.Y., Ushakov I.A., Zukau V.V, et al. // Radiochemistry. 2024. Vol. 66. № 2. P. 205–210.
  7. Skotland T., Iversen T.G., Llorente A., Sandvig K. // Adv. Drug Deliv. Rev. 2022. Vol. 186. ID 114326.
  8. Yakovlev R.Y., Dogadkin N.N., Kulakova I.I., Lisichkin G.V., Leonidov N.B., Kolotov V.P.// Diamond. Relat. Mater. 2015. Vol. 55. P. 77–86.
  9. Karpukhin A.V., Avkhacheva N.V., Yakovlev R.Y., Kulakova I.I., Yashin V.A., Lisichkin G.V., Safronova V.G. // Cell. Biol. Int. 2011. Vol. 35. № 7. P. 727–733.
  10. Dolmatov V.Y., Rudenko D.V., Burkat G.K., Aleksandrova A.S., Vul’ A.Yu., Aleksenskii A.E., et al. // J. Superhard Mater. 2019. Vol. 41. N 3. P. 169–177.
  11. Qaim S.M. // J. Radioanal. Nucl. Chem. 2024. Vol. 333. P. 3577–3584.
  12. Государственная фармакопея Российской Федерации. XV изд. Раздел 3.5: Радиофармацевтические лекарственные препараты. https://pharmacopoeia.regmed.ru/pharmacopoeia/izdanie-15/3/3-5/
  13. Volkov D.S., Krivoshein P.K., Mikheev I.V., Proskurnin M.A. // Diamond Relat. Mater. 2020. Vol. 110. ID 108121.
  14. Buchatskaya Y., Romanchuk A., Yakovlev R., Shiryaev A., Kulakova I., Kalmykov S. // Radiochim. Acta. 2015. Vol. 103. N 3. P. 205–211.
  15. Казаков А.Г., Гаращенко Б.Л., Яковлев Р.Ю., Винокуров С.Е., Мясоедов Б.Ф. // Радиохимия. 2020. T. 62. № 6. C. 519–525.
  16. Ahmadijokani F., Molavi H., Peyghambari A., Shojaei A., Rezakazemi M., Aminabhavi T.M., Arjmand M. // J. Environ. Manag. 2022. Vol. 316. ID 115214.
  17. Liu J.-H., Yang S.T., Chen X.-X., Wang H. // Curr. Drug Metab. 2012. Vol. 13. P. 1046–1056.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Kinetics of scandium sorption (440 ng) by NA samples (100 μg/ml) at pH 2, 3, 4 and 5 (a–g, respectively).

Download (279KB)
3. Fig. 2. Equilibrium values ​​of the degree of scandium sorption (5 μg) by the RUDDM sample at pH 4.0 in 0.9% NaCl from 1 ml of solution.

Download (62KB)
4. Fig. 3. Freundlich (a) and Langmuir (b) adsorption isotherms for scandium sorption by a RUDDM sample in 0.9% NaCl with pH 4.0.

Download (147KB)
5. Fig. 4. Presentation of experimental data and obtained adsorption isotherms in Qe–Ce coordinates.

Download (77KB)
6. Fig. 5. Dependence of ln(Qe/Ce) on Qe during scandium sorption by RUDDM in 0.9% NaCl with pH 4.0.

Download (72KB)

Copyright (c) 2024 Russian Academy of Sciences