Sorption Statics of Cr(VI), Mo(VI), W(VI), Se(IV) Oxygen Anions by Nanostructured Al2O3||C Composite

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

By the methods of thermodynamic modeling, sorption diagnostics, analysis of particle zeta-potential, and UV-Vis spectrometry the equilibrium conditions of sorption interaction of CrO4 2– , MoO4 2– , WO4 2– , SeO3 2– oxygen anions in the region of chemical stability of Al2O3||C composite have been analyzed. The anion sorption isotherms are shown to follow the Langmuir model for a monoenergetic sorbent. The Henry region is observed at concentrations less than 1 μmol/L. According to the established mechanism of surface complexation, the value of anions protonation constant (K1) in the investigated pH range determines the sorption activity of the composite to these anions. This explains the correlation found between the ratio of parameters of acid–base sites {Al–O}, {Al–HO0}, and {Al–OH2+} of composite KM(1,2) and the protonation constant of anion K1. It is shown that the Al2O3||C composite exhibits the properties of collective action sorbent, concentrating from dilute solutions both cations of d-, f-elements and oxygen anions of d-elements with the value of logKd [mL/g] > 4.

Full Text

Restricted Access

About the authors

Е. V. Polyakov

Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: polyakov@ihim.uran.ru
Russian Federation, 620108, 91 Pervomayskaya st., Ekaterinburg

V. N. Krasilnikov

Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences

Email: polyakov@ihim.uran.ru
Russian Federation, 620108, 91 Pervomayskaya st., Ekaterinburg

I. V. Volkov

Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences

Email: polyakov@ihim.uran.ru
Russian Federation, 620108, 91 Pervomayskaya st., Ekaterinburg

A. A. Ioshin

Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences

Email: polyakov@ihim.uran.ru
Russian Federation, 620108, 91 Pervomayskaya st., Ekaterinburg

References

  1. Москвин Л.Н., Гумеров М.Ф., Ефимов А.А., Красноперов В.М., Леорнтьев Г.Г., Мельников В.А. // Методы химического и радиохимического контроля в ядерной энергетике. Сб. статей / Под ред. Л.Н. Москвина. М.: Энергоатомиздат, 1989. С. 264.
  2. Marty N.C.M., Grangeon S., Elkaïm E., Tournassat Ch., Fauchet C., Claret F. // Sci. Rep. 2018. Vol. 8. P. 7943.
  3. Zhang H., Wang J., Wu W., Luo M., Hua R., Zhou Zh., Ling H. // J. Radioanal. Nucl. Chem. 2024. Vol. 333. P. 2273.
  4. Tárkányi F., Hermanne A., Ignatyuk A.V., Ditrói F., Takács S., Capote Noy R. // J. Radioanal. Nucl. Chem. 2024. Vol. 333. P. 717.
  5. Koutsospyros A., Braida W., Christodoulatos C., Dermatas D., Strigul N. // J. Hazard. Mater. 2006. Vol. 136. P. 1.
  6. Вольхин В.В., Егоров Ю.В., Белинская Ф.А., Бойчинова Е.С., Малофеев Г.Н. // Неорганические сорбенты: Сб. статей / Под ред. М.М. Сенявина. М.: Наука, 1981. 271 с.
  7. Зелинский Н.Д., Садиков В.С. Уголь, как средство борьбы с удушающими и ядовитыми газами: Экспериментальное исследование 1915–1916 гг. М.: АН СССР, 1941. 131 с.
  8. Wei X., Huang T., Yang J.H., Zhang N., Wang Y., Zhou Z.W. // J. Hazard. Mater. 2017. Vol. 335. P. 28.
  9. Erto A., Giraldo L., Lancia A., Moreno-Pirajan J.C. // Water Air Soil Pollut. 2013. Vol. 224. P. 1531.
  10. Abdel Salam O.E., Reiad N.A., ElShafei M.M. // J. Adv. Res. 2011. Vol. 2. P. 297.
  11. Salam M.A. // Int. J. Environ. Sci. Technol. 2013. Vol. 10. P. 677–688.
  12. Yamaguchi D., Furukawa K., Takasuga M., Watanabe K. // Sci. Rep. 2014. Vol. 4. P. 6053.
  13. Krasil’nikov V.N., Linnikov O.D., Gyrdasova О.I., Rodina I.V., Tyutyunnik А.P., Baklanova I.V., Polyakov E.V., Khlebnikov N.А., Tarakina N.V. // Solid State Sci. 2020. Vol. 108. ID 106429.
  14. Elgazzar A.H., Mahmoud M.S.A., El Sayed A.A., Saad E.A. // J. Radioanal. Nucl. Chem. 2020. Vol. 326. P. 1733–1748.
  15. Benjamin M.M., Bloom N.S. // Adsorption from Aqueous Solutions / Ed. P.H. Tewari. New York: Plenum, 1981. P. 41.
  16. Bhutani M.M., Mitra A.K., Kumari R. // Microchim. Acta. 1992. Vol. 107. P. 19.
  17. Yu T., Liu B., Liu J. // J. Anal. Test. 2017. Vol. 1. P. 2.
  18. Hou Z., Shi K., Wang X., Ye Y., Guo Zh., Wangsuo W. // J. Radioanal. Nucl. Chem. 2015. Vol. 303. P. 25.
  19. Fan Q., Li P., Pan D. // Interface Sci. Technol. 2020. Vol. 29. P. 1.
  20. Kumar E., Bhatnagar A., Hogland W., Marques M., Sillanpää M. // Chem. Eng. J. 2014. Vol. 241. P. 443.
  21. Кулемин В.В., Красавина Е.П., Горбачева М.П., Румер И.А., Бессонов А.А., Крапухин В.Б., Кулюхин С.А. // Радиохимия. 2021. Т. 63. № 5. С. 484.
  22. Islam M.A., Morton D.W., Johnson B.B., Pramanik B.K., Mainali B., Angove M.J. // J. Environ. Chem. Eng. 2018. Vol. 6. P. 6853.
  23. Poursani A.S., Nilchi A., Hassani A.H., Shariat M., Nouri J. // Int. J. Environ. Sci. Technol. 2015. Vol. 12. P. 2003.
  24. Tabesh S., Davar F., Loghman-Estarki M.R. // J. Alloys Compd. 2018. Vol. 730. P. 441.
  25. Yu J., Bai H., Wang J., Li Z., Jiao C., Liu Q., Zhanga M., Liu L. // New J. Chem. 2013. Vol. 37. P. 366.
  26. Huang S., Pang H., Li L., Jiang S., Wen T., Zhuang L., Hu B., Wang X. // Chem. Eng. J. 2018. Vol. 353. P. 157.
  27. Yang W., Tang Q., Wei J., Ran Y., Chai L., Wang H. // Appl. Surf. Sci. 2016. Vol. 396. P. 215.
  28. Chen H., Luo J., Wang X., Liang X., Zhao Y., Yang C., Baikenov M.I., Su X. // Micropor. Mesopor. Mater. 2018. Vol. 255. P. 69.
  29. Yao W., Wang X., Liang Y., Yu S., Gu P., Sun Y., Xu C., Chen J., Hayat T., Alsaedi A., Wang X. // Chem. Eng. 2018. Vol. 332. P. 775–786.
  30. Krasil’nikov V.N., Baklanova I.V., Polyakov E.V., Volkov I.V., Khlebnikov A.N., Tyutyunnik A.P., Tarakina N.V. // Inorg. Chem. Commun. 2022. Vol. 138. ID 109313.
  31. Поляков Е.В., Красильников В.Н., Волков И.В. Патент RU 2774876 C1, приоритет от 12.08.2021. Опубл. 23.06.2022 // Б.И. 2022. № 18.
  32. Поляков Е.В., Волков И.В., Красильников В.Н., Иошин А.А. // Радиохимия. 2023. Т. 65. № 1. С. 70.
  33. Khalid M., Mushtaq A., Iqbal M.Z. // Sep. Sci. Technol. 2001. Vol. 36. N 2. P. 283.
  34. Kantcheva M., Koz C. // J. Mater. Sci. 2007. Vol. 42. P. 6074.
  35. Chemseddine A., Sanchez C., Livage J., Launay J.P., Fournieric M. // Inorg. Chem. 1984. Vol. 23. N 17. P. 2609.
  36. Пойманова Е.Ю., Розанцев Г.М., Белоусова Е.Е., Чунтук Е.С. // Вісн. Донецьк. нац. унів. Сер. А: Природн. науки. 2014. Т. 2. С. 126.
  37. Загальская Е.Ю., Розанцев Г.М., Радио С.В. // Наук. праці ДонНТУ. Сер.: Хімія і хім. технологія. 2010. Т. 14. С. 40.
  38. Goldberg S. // Soil Sci. 2010. Vol. 175. № 3. P. 105.
  39. Davis J.A., James R.O., Leckie J.O. // J. Colloid Interface Sci. 1978. Vol. 63. № 3. P. 480.
  40. Davis J.A., Leckie J.O. // J. Colloid Interface Sci. 1978. Vol. 67. N 1. P. 90.
  41. Zhang L., Li Y., Guo H., Zhang H., Zhang N., Hayat T., Sun Y. // Environ. Pollut. 2019. Vol. 248. P. 332.
  42. Bolt G.H., De Beodt M.F., Hayes M.H.B., McBride M.B. Interactions at the Soil Colloid–Soil Solution Interface. Ghent: Springer Science + Business Media, 1991. 602 p.
  43. Marmier N., Dumonceau J., Fromage F. // J. Contam. Hydrol. 1997. Vol. 26. P. 159–167.
  44. Huang Sh., Pang H., Li L., Jiang Sh., Wang X. // Chem. Eng. J. 2018. Vol. 3531. P. 157.
  45. Tan X., Ren X., Li J., Wang X. // Surfaces. RSC Adv. 2013. Vol. 3. P. 19551.
  46. Kasprzyk-Hordern B. // Adv. Colloid Interface Sci. 2004. Vol. 110. P. 19.
  47. Yiacoumi S., Tien Ch. Kinetics of Metal Ion Adsorption from Aqueous Solutions. Models, Algorithms, and Applications. New York: Springer Science + Business Media, 1995. 221 p.
  48. Missana T., Garcıa-Gutierrez M. // Phys. Chem. Earth. 2007. Vol. 32. P. 559.
  49. Mayordomo N., Alonso U., Missana T. // Appl. Geochem. 2019. Vol. 100. P. 121.
  50. Tewari P.H. Proc. Symp. on Adsorption from Aqueous Solutions. Meet. of the Am. Chem. Soc., Division of Colloid and Surface Chemistry (Houston, Texas). New York: Plenum, 1980. 248 p.
  51. Kotrly S., Sucha L. Handbook of Chemical Equilibria in Analytical Chemistry. Chichester: Horwood, 1985. 252 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Absorption spectra of Na2WO4-HCl solution obtained during storage of the solution in the light in air-dry atmosphere at different exposure times t (days). pH 6.02, initial concentration of W(VI) 1.0 mmol/L, NaCl - 0.01 mol/L, temperature 23C, spectra were taken relative to distilled water.

Download (138KB)
3. Fig. 2. Isotherms of anion sorption by Al2O3||C composite obtained at variable anion concentration in solution, equations (1), (2). Exposure time t = 21 days. pH 6.5-9.05. 23°C. Vessels - glass beakers of dark glass.

Download (147KB)
4. Fig. 3. Anion sorption isotherms of Al2O3||C composite obtained in the light and in the dark at variable hydrogen ion concentration in solution. Exposure time t = 21 days. 23°С. The dishes are plastic hermetically sealed containers.

Download (155KB)
5. Fig. 4. Results of modeling of thermodynamic equilibria in the studied anion solutions (HSC Chemistry 8 program). Abscissa axis - pH, ordinate axis - lg(A), where A is the equilibrium concentration of simple oxygen anions Cr(VI), Mo(VI), W(VI), Se(IV) in solution, μmol/kg. The equilibrium concentrations in the sorption experiments were (µmol/L): Cr(VI) 0.1-10, Mo(VI) 10-60, W(VI) 0.1-10, Se(IV) 0.01-1.0. Temperature 23C.

Download (949KB)
6. Fig. 5. Comparison of the protonation constants (8) of the oxygen anions CrO4 2-, MoO4 2-, WO4 2-, SeO3 2- K1 found by equation (9) with the thermodynamic values of the first protonation constant of the anion K1,T [51]. The dark line is the regression equation, the dashed line is the limits of the 90% confidence interval.

Download (137KB)
7. Fig. 6. Correlation of acid-base properties of sorption centers (-SOH0), (-SO-) of KM(1,2) composite and protonation constant of K1 anion.

Download (155KB)
8. Fig. 7. a - Example of the ratio of acid-base centers (-SOHn) of Al2O3||C composite as a function of pH based on the results of modeling the sorption of CrO4 2- anions with a concentration of 0.1-10 μmol/L, t = 21 days. b - Dependence of ζ-potential of the suspension of Al2O3|||C-NaCl composite on pH at 23°C. pH(in) is the initial pH of the solution, pH(f) is the pH of the solution by time t.

Download (290KB)

Copyright (c) 2024 Russian Academy of Sciences