Thermal Stability of Irradiated VP–1AP Anion Exchange Resin

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of irradiation of a strongly basic vinylpyridine anion exchange resin of the VP–1AP grade in nitrate form on the onset temperatures of exothermic reactions, thermal effects and the composition of gaseous thermolysis products of VP–1AP was studied. It was established that the onset temperatures of exothermic reactions for an irradiated anion exchange resin are reduced by 59–100°C. The total thermal effect of thermolysis of the irradiated sorbent is 67% less than that of the non-irradiated one. An analysis of the composition of the gaseous thermolysis products of the VP–1AP irradiated anion exchange resin showed that at the first stage of thermolysis, the functional groups of the sorbent are predominantly decomposed. At higher temperatures, the process of degradation of the styrene-divinylbenzene anion exchange resin matrix was detected. The significant influence of irradiation on the conditions for the safe use of anion exchange resins during separation of radionuclides from nitric acid solutions was demonstrated.

Full Text

Restricted Access

About the authors

V. V. Kalistratova

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: vmilyutin@mail.ru
Russian Federation, Moscow, 119071

E. V. Belova

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: vmilyutin@mail.ru
Russian Federation, Moscow, 119071

V. V. Milyutin

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Author for correspondence.
Email: vmilyutin@mail.ru
Russian Federation, Moscow, 119071

E. R. Nazin

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: vmilyutin@mail.ru
Russian Federation, Moscow, 119071

References

  1. Лызлова Е.В., Глухова А.В., Кондруцкий Д.А. // Радиохимия. 2019. Т. 61. № 2. С. 122–126.
  2. Лызлова Е.В., Глухова А.В., Старовойтов Н.П., Логунов М.В., Гелис В.М. // Вопр. радиац. безопасности. 2013. № 2. С. 57–63.
  3. Peterson R.A., Brown G., Rovira A.M. Ion Exchange. Engineering Separations Unit Operations for Nuclear Processing. CRC, 2019. P. 251–303.
  4. Du M., Hylton T.D., Robinson S.M. // J. Radioanal. Nucl. Chem. 2021. Vol. 327. P. 417–424.
  5. Назин Е.Р., Зачиняев Г.М. Пожаровзрывобезопасность технологических процессов радиохимических производств. М.: НТЦ ЯРБ, 2009.
  6. Nazin E., Belova E. // Prog. Nucl. Energy. 2022. Vol. 149. Article 104254.
  7. Глаголенко Ю.В. Анализ причин разгерметизации сорбционной колонны на установке по производству плутония–238 радиоизотопного завода ПО «Маяк» Радиевый ин-т им. В.Г. Хлопина, ЦНИИатоминформ, 1996.
  8. Стрелков С.А. Роль радиационно-химических эффектов в сорбционных процессах на анионите ВП–1Ап: автореф. дис. … к.х.н. СПб.: Радиевый ин-т, 2006. 23 с.
  9. Milyutin V.V., Nekrasova N.A., Tret’yakov V.A., Kondrutskii D.A. // Radiochemistry. 2016. Vol. 58. P. 640–644.
  10. Orhan T., Hacaloglu J. // Polym. Degrad. Stab. 2013. Vol. 98. No. 1. P. 356–360.
  11. Лызлова Е.В., Глухова А.В., Конников А.В., Бирюкова М.А. // Радиохимия. 2020. Т. 62. № 3. С. 234–239.
  12. Sato Y., Matsunaga T., Koyama S.I., Suzuki T., Ozawa M. // Energy Procedia. 2015. Vol. 71. P. 112–122.
  13. Sato Y., Okada K., Akiyoshi M., Matsunaga T., Koyama S.I., Suzuki T., Ozawa M. // Prog. Nucl. Energy. 2011. Vol. 53. № 7. P. 988–993.
  14. Baidak A., LaVerne J.A. // J. Nucl. Mater. 2010. Vol. 407. № 3. P. 211–219.
  15. Ramesh Kumar C., Vijayakumar V., Suresh A., Jayalakshmi S., Sivaraman N. // J. Radioanal. Nucl. Chem. 2019. Vol. 321. P. 617–627.
  16. Wang J., Wan Z. // Prog. Nucl. Energy. 2015. Vol. 78. P. 47–55.
  17. Luca V., Bianchi H.L., Manzini A.C. // J. Nucl. Mater. 2012. Vol. 424. No. 1–3. P. 1–11.
  18. Ионообменные материалы для процессов гидрометаллургии, очистки сточных вод и водоподготовки: Справ. М.: ВНИИХТ, 1983. 207 с.
  19. Калистратова В.В., Родин А.В., Емельянов А.С., Виданов В.Л., Милютин В.В., Белова Е.В., Шмидт О.В., Мясоедов Б.Ф. // Радиохимия. 2018. Т. 60. № 3. С. 250–255.
  20. Горст А.Г. Пороха и взрывчатые вещества. М.: Машиностроение, 1972. 207 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Основные физико-химические характеристики анионита ВП-1АП [13]:

Download (47KB)
3. Fig. 1. Dependence of the specific heat flux on the heating temperature of non-irradiated (1) and irradiated (2) VP-1AP anionite in nitrate form.

Download (108KB)
4. 2. Chromatograms of gaseous thermolysis products of irradiated VP-1AP (Chromatogram 1) and non-irradiated VP-1AP (Chromatogrmma 2) corresponding to the temperature ranges of the third stage of thermolysis.

Download (254KB)
5. Fig. 3. Images of the surface of VP-1AP anionite granules: on the left is an unirradiated sample; on the right is an irradiated sample.

Download (140KB)

Copyright (c) 2024 Russian Academy of Sciences