Sorption Recovery of Cesium from High Level Alkaline Waste from Mayak Production Association

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of the sorption of 137Cs from the clarified phase of accumulated high-level alkaline radioactive waste from the Mayak Production Association using sorbents based on modified nickel ferrocyanide (Fersal) and resorcinol–formaldehyde resin (RFS-I) in batch and flow conditions are presented. In batch conditions, the distribution coefficient of 137Cs on Fersal and RFS-I sorbents is 2300 and 730 cm3/g, respectively. In flow conditions, the volume of the passed solution before the 137Cs breakthrough for Fersal and RFS-I sorbents is 140 and 85 column volumes, and the maximum purification factor is 104 and 103, respectively. To desorb cesium from the Fersal and the RFS-I, 8 mol/dm3 HNO3 and 1 mol/dm3 HNO3 solutions, respectively, were used. A decrease in the sorption characteristics of the RFS-I sorbent during the sorption of cesium from high-level alkaline radioactive waste was discovered. A conclusion about the possibility of using the Fersal sorbent for the recovery of 137Cs from high-level alkaline radioactive waste from the Mayak Production Association has been made.

Full Text

Restricted Access

About the authors

K. A. Feoktistov

Mayak Production Association

Email: vmilyutin@mail.ru
Russian Federation, pr. Lenina 31, Ozyorsk, Chelyabinsk oblast, 456784

D. V. Markova

Mayak Production Association

Email: vmilyutin@mail.ru
Russian Federation, pr. Lenina 31, Ozyorsk, Chelyabinsk oblast, 456784

P. V. Kozlov

Mayak Production Association

Email: vmilyutin@mail.ru
Russian Federation, pr. Lenina 31, Ozyorsk, Chelyabinsk oblast, 456784

S. M. Shaydullin

Mayak Production Association

Email: vmilyutin@mail.ru
Russian Federation, pr. Lenina 31, Ozyorsk, Chelyabinsk oblast, 456784

V. V. Milyutin

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Author for correspondence.
Email: vmilyutin@mail.ru
Russian Federation, Leninskii pr. 31, korp. 4, Moscow, 119071

N. A. Nekrasova

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: vmilyutin@mail.ru
Russian Federation, Leninskii pr. 31, korp. 4, Moscow, 119071

M. V. Tutov

Institute of Chemistry, Far East Branch, Russian Academy of Sciences

Email: vmilyutin@mail.ru
Russian Federation, pr. Stoletyia Vladivostoka 159, Vladivostok, 690092

A. M. Yegorin

Institute of Chemistry, Far East Branch, Russian Academy of Sciences

Email: vmilyutin@mail.ru
Russian Federation, pr. Stoletyia Vladivostoka 159, Vladivostok, 690092

References

  1. Козлов П.В., Логунов М.В., Ремизов М.Б., Шайдуллин С.М., Лукин С.А., Зубриловский Е.Н. // Радиоактивные отходы. 2023. № 3 (24). С. 14–33.
  2. Логунов М.В., Карпов В.И., Дружинина Н.Е., Тананаев И.Г. // Вопр. радиац. безопасности. 2011. № 1. С. 15–28.
  3. Логунов М.В., Карпов В.А., Тананаев И.Г. // Вопр. радиац. безопасности. 2011. № 4. С. 18–27.
  4. Козлов П.В., Казадаев А.А., Макаровский Р.А., Ремизов М.Б., Вербицкий К.В., Логунов М.В. // Радиохимия. 2016. Т. 58. № 3. С. 255–260.
  5. Козлов П.В., Ремизов М.Б., Макаровский Р.А., Дементьева И.И., Лупеха Н.А., Зубриловский Е.Н., Кустов С.В., Мирошниченко А.А. // Радиоактивные отходы. 2018. № 4 (5). С. 55–66.
  6. Слюнчев О.М., Ремизова В.А., Бобров П.А., Козлов П.В. // Цемент и его применение. 2022. № 2. С. 52–57.
  7. Duignan M.R., Nash C.A. // Sep. Sci. Technol. 2010. Vol. 45. № 12–13. P. 1828–1840.
  8. Tokar E., Tutov M., Bratskaya S., Egorin A. // Molecules. 2022. Vol. 27. P. 8937.
  9. Козлов П.В., Ремизов М.Б., Логунов М.В., Милютин В.В., Егорин А.М., Авраменко В.А. // Вопр. радиац. безопасности. 2017. № 1. С. 34–41.
  10. Hassan N.M., Adu-Wusu K. // Solvent Extr. Ion Exch. 2005. Vol. 23. N3. P. 375–389.
  11. Wilmarth W.R., Lumetta G.J., Johnson M.E., Poirier M.R., Thompson M.C., Suggs P.C., Machara N.P. // Solvent Extr. Ion Exch. 2011. Vol. 29. N1. P. 1.
  12. Rapco B.M., Sinkov S.L., Levitskaia T.G. // Sep. Sci. Technol. 2005. Vol. 40. P. 40.
  13. Zheng Z., Philip C.V., Anthony R.G., Krumhansl J.L., Trudell D.E., Miller J.E. // Ind. Eng. Chem. Res. 1996. Vol. 35. P. 4246–4256.
  14. Слюнчев О.М., Истомина Н.М., Старовойтов Н.П., Мальцев А.А., Дудкин В.А., Бобров П.А., Ремизова В.А. // Вопр. радиац. безопасности. 2020. № 3. С. 7–15.
  15. Fiskum S.K., Pease L.F., Peterson R.A. // Solvent Extr. Ion Exch. 2020. Vol. 38. P. 573–611.
  16. Милютин В.В., Некрасова Н.А., Козлов П.В., Маркова Д.В. // Радиохимия. 2023. Т. 65. № 4. С. 329–336.
  17. Маркова Д.В., Феоктистов К.А., Козлов П.В., Панкратова О.М., Коренев С.В., Милютин В.В., Егорин А.М., Токарь Э.А. // Вопр. радиац. безопасности. 2023. № 2. С. 7–13.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Output curves of caesium sorption on Versailles (1, 2) and RFS-I (3, 4) sorbents from the clarified part of alkaline BAO (1, 3) and the model solution (2, 4).

Download (147KB)
3. Fig. 2. Output curves of cesium sorption on the RFS-I sorbent in three consecutive cycles. The curve numbers correspond to the cycle number.

Download (82KB)

Copyright (c) 2024 Russian Academy of Sciences