Sorbent based on manganese(III, IV) oxides of the MDM brand: preparation, sorption characteristics and application for purification of liquid radioactive waste from strontium and radium radionuclides

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The optimal conditions for the synthesis of a granular sorbent based on mixed Mn(III, IV) oxide by the interaction of aqueous solutions of MnSO4 and KMpO4 in an alkaline medium were determined: the molar ratio Mn2+/MnO4 is 1.70–1.80; the pH of the reaction mixture is 11.0–12.5; the calcination temperature is 220°C. For the sorbent obtained under optimal conditions, the values of the distribution coefficient (Kd) 90Sr in 0.01 M CaCl2 solution, the static exchange capacity for calcium, the hydromechanical strength of granules, as well as the dependence of Kd 90Sr on the concentration of sodium and calcium ions were determined. It is shown that the resulting sorbent has higher sorption characteristics with respect to strontium compared with known sorbents. A technology has been developed for the production of pilot batches of sorbent, named MDM. Examples of the use of MDM sorbent for the purification of various types of liquid radioactive waste from strontium and radium radionuclides are given.

Full Text

Restricted Access

About the authors

V. V. Milyutin

Frumkin Institute of Physical Chemistry and Electrochemistry

Author for correspondence.
Email: vmilyutin@mail.ru
Russian Federation, Moscow, 119071

O. A. Kononenko

Frumkin Institute of Physical Chemistry and Electrochemistry

Email: vmilyutin@mail.ru
Russian Federation, Moscow, 119071

N. A. Nekrasova

Frumkin Institute of Physical Chemistry and Electrochemistry

Email: vmilyutin@mail.ru
Russian Federation, Moscow, 119071

References

  1. Myasoedov B.F., Kalmykov S.N. // Mendeleev Commun. 2015. Vol. 25. N 5. P. 319–328. https://doi.org/10.1016/j.mencom.2015.09.001.
  2. Castrillejo M., Casacuberta N., Breier C.F., Pike S.M., Masqué P., Buesseler K.O. // Environ. Sci. Technol. 2016. Vol. 50. N 1. P. 173–180. https://doi.org/10.1021/acs.est.5b03903.
  3. Milyutin V.V., Nekrasova N.A., Kaptakov V.O., Kozlitin E.A. // Adsorption. 2023. Vol. 29. P. 323–334. https://doi.org/10.1007/s10450-023-00407-w.
  4. Wilmarth W.R., Lumetta G.J., Johnson M.E., Poirier M.R., Thompson M.C., Suggs P.C., Machara N.P. // Solvent Extr. Ion Exch. 2011. Vol. 29. P. 1–48. https://doi.org/10.1080/07366299.2011.539134.
  5. Voronina A.V., Semenishchev V.S., Gupta D.K. // Strontium Contamination in the Environment: vol. 88 of The Series of Environmental Chemistry, Springer, 2020, pp. 203–226. https://doi.org/10.1007/978-3-030-15314-4_11.
  6. Hartmann E., Geckeis H., Rabung T., Lützenkirchen J., Fanghänel T. // Radiochim. Acta. 2008. Vol. 96. N 9. P. 699–707. https://doi.org/10.1524/ract.2008.1556.
  7. Milyutin V.V., Gelis V.M., Nekrasova N.A., Kononenko O.A., Vezentsev A.I., Volovicheva N.A., Korol’kova S.V. // Radiochemistry. 2012. Vol. 54. N 1. P. 75–78. https://doi.org/10.1134/S1066362212010110.
  8. Milyutin V.V., Nekrasova N.A., Belousov P.E., Krupskaya V.V. // Radiochemistry. 2021. Vol. 63. N 6. P. 741–746. https://doi.org/10.1134/S1066362221060059.
  9. Misaelides P. // Micropor. Mesopor. Mater. 2011. Vol. 144. N 1. P. 15–18. https://doi.org/10.1016/j.micromeso.2011.03.024.
  10. Kwon S., Choi Y., Sigh B.K. // Appl. Surf. Sci. 2020. Vol. 506. Article 145029. https://doi.org/10.1016/j.apsusc.2019.145029.
  11. Kuznetsov V.A., Generalova V.A. // Radiochemistry. 2000. Vol. 42. N 2. P. 166–169.
  12. Valsala T.P., Joseph A., Sonar N.L., Sonavane M.S., Shah J.G., Raj K., Venugopal V. // J. Nucl. Mater. 2010. Vol. 404. N 2. P. 138–143. https://doi.org/10.1016/j.jnucmat.2010.07.017.
  13. Singh B.K., Tomar R., Kumar S., Kar A.S., Tomar B.S., Ramanathan S., Manchanda V.K. // Radiochim. Acta. 2014. Vol. 102. N 3. P. 255–261. https://doi.org/10.1515/ract-2014-2118.
  14. Voronina A.V., Semenishchev V.S. // J. Radioanal. Nucl. Chem. 2016. Vol. 307. P. 577–590. https://doi.org/10.1007/s10967-015-4197-z.
  15. Ivanets A., Milyutin V., Shashkova I., Kitikova N., Nekrasova N., Radkevich A. // J. Radioanal. Nucl. Chem. 2020. Vol. 324. N 3. P. 1115–1123. https://doi.org/10.1007/s10967-020-07140-6.
  16. Thakkar R., Chudasama U. // J. Hazard. Mater. 2009. Vol. 172. N 1. P. 129–137. https://doi.org/10.1016/j.jhazmat.2009.06.154.
  17. Korneikov R.I., Ivanenko V.I. // Inorg. Mater. 2020. Vol. 56. P. 502–506. https://doi.org/10.1134/S0020168520050088.
  18. Bevara S., Giri P., Patwe S.J., Achary S.N., Mishra R.K., Kumar A., Sinha A.K., Kaushik C.P., Tyagi A.K. // J. Environ. Chem. Eng. 2018. Vol. 6. N 2. P. 2248–2261. https://doi.org/10.1016/j.jece.2018.03.013.
  19. Villard A., Toquer G., Siboulet B., Trens P., Grandjean A., Dufrêche J.-F. // Chemosphere. 2018. Vol. 202. P. 33–39. https://doi.org/10.1016/j.chemosphere.2018.02.017.
  20. Tratnjek T., Deschanels X., Hertz A., Rey C., Causse J. // J. Hazard. Mater. 2022. Vol. 440. Article 129755. https://doi.org/10.1016/j.jhazmat.2022.129755.
  21. Decaillon J.G., Andres Y., Mokili B.M., Abbe J.C., Tournoux M., Patarin J. // Solvent Extr. Ion Exch. 2002. Vol. 20. N 2. P. 273–291. https://doi.org/10.1081/SEI-120003027.
  22. Hobbs D.Т., Barnes M.J., Pulmano R.L., Marshall K.M., Edwards T.B., Bronikowski M.G., Fink S.D. // Sep. Sci. Technol. 2005. Vol. 40. N 15. P. 3093–3111. https://doi.org/10.1080/01496390500385129.
  23. Lehto J., Brodkin L., Harjula R., Tusa E. // Nucl. Technol. 1999. Vol. 127. N 1. P. 81–87. https://doi.org/10.13182/NT99-A2985.
  24. Milyutin V.V., Nekrasova N.A., Yanicheva N.Yu., Kalashnikova G.O., Ganicheva Ya.Yu. // Radiochemistry. 2017. Vol. 59. N 1. Р. 65–69. https://doi.org/10.1134/S1066362217010088.
  25. Park Y., Shin W.S., Reddy G.S., Shin S.-J., Choi S.-J. // J. Nanoelectron. Optoelectron. 2010. Vol. 5. N 2. P. 238–242. https://doi.org/10.1166/jno.2010.1101.
  26. Solbra S., Allison N., Waite S., Mihalovsky S.V., A.I., Bortun L.N., Clearfield A. // Environ. Sci. Technol. 2001. Vol. 35. N 3. Р. 626–629. https://doi.org/10.1021/es000136x.
  27. Matskevich A.I., Tokar E.A., Sokolnitskaya T.A., Markin N.S., Priimak I.D., Egorin A.M. // J. Radioanal. Nucl. Chem. 2022. Vol. 331. P. 5691–5699. https://doi.org/10.1007/s10967-022-08636-z.
  28. Singh O.V., Tandon S.N. // Int. J. Appl. Radiat. Isot. 1977. Vol. 28. N 8. P. 701–704. https://doi.org/10.1016/0020-708X(77)90088-6.
  29. Ivanets A.I., Milutin V.V., Prozorovich V.G., Kouznetsova T.F., Nekrasova N.A. // J. Radioanal. Nucl. Chem. 2019. Vol. 321. N 1. P. 243–253. https://doi.org/10.1007/s10967-019-06557-y.
  30. Egorin A., Sokolnitskaya T., Azarova Y., Portnyagin A., Balanov M., Misko D., Shelestyuk E., Kalashnikova A., Tokar E., Tananaev I., Avramenko V. // J. Radioanal. Nucl. Chem. 2018. Vol. 317. P. 243–251. https://doi.org/10.1007/s10967-018-5905-2.
  31. Bevara S., Giri P., Achary S.N., Bhallerao G., Mishra R.K., Kumar A., Kaushik C.P., Tyagi A.K. // J. Environ. Chem. Eng. 2018. Vol. 6. N 6. P. 7200–7213. https://doi.org/10.1016/j.jece.2018.11.021.
  32. Cai J., Liu J., Suib S.L. // Chem. Mater. 2002. Vol. 14. N 5. P. 2071–2077. https://doi.org/10.1021/cm010771h.
  33. Леонтьева Г.В. // ЖПХ. 1997. Т. 70. № 10. С. 1615–1619.
  34. Feng Q., Kanoh H., Ooi K. // J. Mater. Chem. 1999. Vol. 9. N 2. P. 319–333. https://doi.org/10.1039/a805369c.
  35. Golden D.C., Dixon J.B., Chen C.C. // Clays Clay Miner. 1986. Vol. 34. P. 511–520. https://doi.org/10.1346/CCMN.1986.0340503.
  36. Леонтьева Г.В., Вольхин В.В., Бахирева О.И. Патент RU 2094115 C1. 1997.
  37. Ворошилов Ю.А., Логунов М.В., Прокофьев Н.Н., Землина Н.П. // Радиохимия. 2003. Т. 45. № 1. С. 62–65.
  38. Шварценбах Г., Флашка Г. Комплексонометрическое титрование. М.: Химия, 1970. 360 с.
  39. Шарло Г. Методы аналитической химии. М.: Химия, 1965. 976с.
  40. Карлин Ю.В., Чуйков В.Ю., Адамович Д.В., Сластенников Ю.Т., Ильин В.А., Суменко А.В., Флит В.Ю., Дмитриев С.А., Соболев И.А. // Атом. энергия. 2001. Т. 90. Вып. 1. С. 6–69.
  41. Адамович Д.В., Арустамов А.Э., Гелис В.М., Кононенко О.А., Милютин В.В. Патент RU 2263536C1. 2004. Oпубл. 10.11.2005 // Б.И. 2005. № 31.
  42. Савкин А.Е. // Вопр. атом. науки и техники. Сер.: Материаловедение и новые материалы. 2019. Вып. 3 (99). С. 39–50.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Derivatogram of a sample of mixed Mn(III, IV) oxide.

Download (94KB)
3. Fig. 2. Dependence of Kd 90Sr on the concentration of sodium ions on sorbents: 1 – Mn(III, IV) oxide, 2 – Na-A zeolite, 3 – Tokem-100 sulfocationite.

Download (67KB)
4. Fig. 3. Dependence of Kd 90Sr on the concentration of calcium ions on sorbents: 1 – Mn(III, IV) oxide, 2 – Tokem-100 sulfocationite, 3 – Na-A zeolite.

Download (62KB)

Copyright (c) 2024 Russian Academy of Sciences