Localization of iodine and uranyl carbonate complex on metal-containing clay materials from aqueous media

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The processes of localization of I2, I, and [UO2(CO3)3]4– from aqueous solutions under static conditions on metal-containing clay powders from kaolin clays of the Kampanovskoye deposit and from bentonite clays of the 10th Khutor and Dinozavrovoe deposits were investigated. The studies were carried out with Cu-, Ni-, Zn-, and Fe-containing clay powders treated with a 2 mol/L solution of hydrazine hydrate. It was shown that the [UO2(CO3)3]4– complex is not sorbed on the synthesized clay materials from aqueous solutions under static conditions. It has been established that the synthesized clay materials are capable of not only reducing the amount of the molecular form of iodine in an aqueous solution, but also sorbing the ionic form of iodine from an aqueous solution of KI to almost 100% at a concentration of I less than 10–2 mol/L.

Толық мәтін

Рұқсат жабық

Авторлар туралы

E. Krasavina

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: kulyukhin@ipc.rssi.ru
Ресей, Moscow, 119071

K. Martynov

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: kulyukhin@ipc.rssi.ru
Ресей, Moscow, 119071

K. Arzumanova

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: kulyukhin@ipc.rssi.ru
Ресей, Moscow, 119071

A. Gordeev

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: kulyukhin@ipc.rssi.ru
Ресей, Moscow, 119071

A. Bomchuk

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: kulyukhin@ipc.rssi.ru
Ресей, Moscow, 119071

V. Zharkova

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: kulyukhin@ipc.rssi.ru
Ресей, Moscow, 119071

S. Kulyukhin

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: kulyukhin@ipc.rssi.ru
Ресей, Moscow, 119071

Әдебиет тізімі

  1. Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste / Eds M.J. Apted, J. Ahn. Duxford: Woodhead, 2017. 2nd Ed. ISBN: 978-0-08-100652-8
  2. Мартынов К.В., Захарова Е.В., Дорофеев А.Н., Зубков А.А., Прищеп А.А. // Радиоактивные отходы. 2020. № 3 (12). С. 39–53. https://doi.org/10.25283/2587-9707-2020-3-39-53
  3. Мартынов К.В., Захарова Е.В., Дорофеев А.Н., Зубков А.А., Прищеп А.А. // Радиоактивные отходы. 2020. № 4 (13). С. 42–57. https://doi.org/10.25283/2587-9707-2020-4-42-57
  4. Sellin P., Leupin O.X. // Clays Clay Miner. 2013. Vol. 61. N 6. P. 477–498. https://doi.org/00010.1346/CCMN.2013.0610601
  5. Tan Y., Xu X., Ming H., Sun D. // Ann. Nucl. Energy. 2022. Vol. 165. ID 108660. https://doi.org/10.1016/j.anucene.2021.108660
  6. Медведева Н.А., Ситева О.С., Середин В.В. // Вестн. ПНИПУ. Геология. Нефтегазовое и горное дело. 2018. Т. 18. № 2. С. 118–128. https://doi.org/10.15593/2224-9923/2018.4.2
  7. Liu C., Xu Q., Xu Y., Wang B., Long H., Fang S., Zhou D. // J. Radioanal. Nucl. Chem. 2022. Vol. 331. N 1. P. 597–607. https://doi.org/10.1007/s10967-021-08123-x
  8. Blokhin P.A., Bogatov S.A., Boldyrev K.A., Sobolev D.A. // Radioactive Waste. 2024. N 1 (26). P. 57–68. https://doi.org/10 25283/2587-9707-2024-1-57-68
  9. Goo J.-Y., Kim B.-J., Kwon J.-S., Jo H.Y. // Appl. Clay Sci. 2023. Vol. 245. ID 107141. https://doi.org/10.1016/j.clay.2023.107141
  10. Tsai T.-L., Tsai S.-C., Chang D.-M., Cheng W.-H. // J. Radioanal. Nucl. Chem. 2021. Vol. 330. N 3. P. 1317–1327. https://doi.org/10.1007/s10967-021-08041-y
  11. Fukatsu Y., Yotsuji K., Ohkubo T., Tachi Y. // Appl. Clay Sci. 2021. Vol. 211. ID 106176. https://doi.org/10.1016/j.clay.2021.106176
  12. Niu X., Elakneswaran Y., Islam C.R., Provis J.L., Sato T. // J. Hazard. Mater. 2022. Vol. 429. ID 128373. https://doi.org/10.1016/j.jhazmat.2022.128373
  13. Никитина Н.В., Казаринов И.А., Фартукова Е.В. // Изв. Саратовск. ун-та. Нов. Сер. Сер. Химия. Биология. Экология. 2018. Т. 18. N 1. С. 20–24. https://doi.org/10.18500/1816-9775-2018-18-1-20-24.
  14. Никитина Н.В., Комов Д.Н., Казаринов И.А., Никитина Н.В. // Сорбционные и хроматографические процессы. 2016. Т. 16. № 2. С. 191–199.
  15. Buzetzky D., Kovacs E.M., Nagy M.N., Konya J. // J. Radioanal. Nucl. Chem. 2019. Vol. 322. N 3. P. 1771–1776. https://doi.org/10.1007/s10967-019-06852-8
  16. Тюпина Е.А., Прядко А.В. // Сорбционные и хроматографические процессы. 2023. Т. 23. № 1. С. 74–85. https://doi.org/10.17308/sorpchrom.2023/10995
  17. Шарло Г. Методы аналитической химии. Количественный анализ неорганических соединений. М.: Химия, 1957. Т. 2.
  18. Ксензенко В.И., Стасиневич Д.С. Химия и технология брома, иода и их соединений. М.: Химия, 1995. С. 69.
  19. Метод Фольгарда // Электронный ресурс: https://referatwork.ru/category/obrazovanie/view/212766_metod_fol_gardaс (дата посещения: 25.04.2024)
  20. Красавина Е.П., Мартынов К.В., Арзуманова К.Г., Бессонов А.А., Гордеев А.В., Бомчук А.Ю., Жаркова В.О., Кулюхин С.А. // Радиохимия. 2024. Т. 66, № 2. С.
  21. JCPDS—Int. Centre for Diffraction Data. PDF 01-075-0938, Al2Si2O5(OH)4 (каолинит).
  22. JCPDS—Int. Centre for Diffraction Data. PDF 01-085-0798, кварц.
  23. JCPDS—Int. Centre for Diffraction Data. PDF 00-002-0291, Al2O3H2O (диаспор).
  24. JCPDS—Int. Centre for Diffraction Data. PDF 00-031-0582, H2Si2O5 (кремневая кислота).
  25. JCPDS—Inter. Centre for Diffraction Data. PDF 01-074-1879, AlO(OH) (диаспор).
  26. JCPDS—Int. Centre for Diffraction Data. PDF 00-033-0252, Ca2Al2O5 (алюминат кальция).
  27. JCPDS—Inter. Centre for Diffraction Data. PDF 00-035-0061, H8Si8O20∙ xH2O (кремневая кислота, гидрат).
  28. JCPDS—Inter. Centre for Diffraction Data. PDF 00-045-0423, H2Si14O29∙xH2O (кремневая кислота, гидрат).
  29. JCPDS—Int. Centre for Diffraction Data. PDF 00-038-1429, Ca3Al2O6 (алюминат кальция).
  30. JCPDS—Int. Centre for Diffraction Data. PDF 01-070-0839, Ca9Al6O18 (алюминат кальция).
  31. JCPDS—Int. Centre for Diffraction Data. PDF 00-029-1498, Na0.3(Al,Mg)2Si4O10(OH)2∙4H2O (монтмориллонит в Na-форме).
  32. JCPDS—Int. Centre for Diffraction Data. PDF 00-013-0125, Ca0.2(Al,Mg)2Si4O10(OH)2∙4H2O (монтмориллонит в Ca-форме).
  33. JCPDS—Int. Centre for Diffraction Data. PDF 00-048-0539, CaAl13.2O20.8 (алюминат кальция).
  34. JCPDS—Int. Centre for Diffraction Data. PDF 00-029-0281, CaAl2O48.5H2O (алюминат кальция).
  35. JCPDS—Int. Centre for Diffraction Data. PDF 00-016-0339, Ca2Al(OH)7∙6.5H2O (гидроксиалюминат кальция).
  36. Кулюхин С.А., Неволин Ю.М., Красавина Е.П., Румер И.А., Кулемин В.В. // Материалы Всеросс. научн. конф. «IV Байкальский материаловедческий форум (БМФ 2022)». Улан-Удэ – оз. Байкал, Россия, 2022. С. 339–340.
  37. Patil K.C., Nesamani C., Pai Verneker V.R. // Synth. React. Inorg. Met.-Org. Chem. 1982. Vol. 12. N 4. P. 383–395.
  38. Кулюхин С.А., Мизина Л.В., Тишина А.А., Румер И.А., Красавина Е.П. // Радиохимия. 2010. Т. 52. № 2. С. 165–171.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Initial and metal-containing clay materials after GG treatment. Arrangement of samples from left to right, 1st row from top: KGPO-23-GG, KGPO-23-Fe-GG, KGPO-23-Ni-GG, KGPO-28-GG; 2nd row from top: KhBGP-GG, KhBGP-Fe-GG, KhBGP-Cu-GG, DB-GG; 3rd row from top: DB-Fe-GG, DB-Ni-GG, DB-Cu-GG, DB-Zn-GG.

Жүктеу (432KB)
3. Fig. 2. Initial and metal-containing clay KGPO-23 before and after GG treatment. 1 – KGPO-23-W, 2 – KGPO-23-GG, 3 – KGPO-23-Fe, 4 – KGPO-23-Fe-GG, 5 – KGPO-23-Ni, 6 – KGPO-23-Ni-GG; K – kaolinite [21], Q – quartz [22], D – diaspore Al2O3Ч.

Жүктеу (210KB)
4. Fig. 3. Clay KGPO-28 before and after processing with GG. 1 – KGPO-28-W, 2 – KGPO-28-GG; K – kaolinite [21], Q – quartz [22], D – diaspore AlO(OH) [25], S – silicic acid [24], A – calcium aluminate Ca2Al2O5 [26].

Жүктеу (145KB)
5. Fig. 4. Initial and metal-containing clay CBGP before and after treatment with GG. 1 – CBGP-W, 2 – CBGP-GG, 3 – CBGP-Fe, 4 – CBGP-Fe-GG, 5 – CBGP-Cu, 6 – CBGP-Cu-GG; Q – quartz [22], S – silicic acid HxSiyOz∙nH2O (x = 8, 2; y = 8, 14; z = 20, 29) [27, 28], A – calcium aluminate Ca3Al2O6 [29] (or Ca9Al6O18 [30]), Na-Mt – montmorillonite in the Na form [31], Ca-Mt – montmorillonite in the Ca form [32].

Жүктеу (191KB)
6. Fig. 5. Initial and metal-containing clay DB before and after treatment with GG. 1 – DB-W, 2 – DB-GG, 3 – DB-Fe, 4 – DB-Fe-GG, 5 – DB-Ni, 6 – DB-Ni-GG, 7 – DB-Cu, 8 – DB-Cu-GG, 9 – DB-Zn, 10 – DB-Zn-GG; Ca-Mt – montmorillonite in the Ca-form [32], Q – quartz [22], S – silicic acid H2Si14O29∙ xH2O [28], A – calcium aluminate Ca3Al2O6 [29], A1 – calcium aluminate CaAl13.2O20.8 [33] (or CaAl2O4∙ 8.5H2O [34]), HA – calcium hydroxyaluminate aqueous Ca2Al(OH)7∙ 6.5H2O [35].

Жүктеу (248KB)

© Russian Academy of Sciences, 2024