Neptunium(VI) Nitrate Complexes with Urea and Terpyridine Derivatives

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Two new complex Np(VI) nitrates with carbamoylurea (biuret) and with a derivative of terpyridine (Ph-Terpy) of the composition [(NpO2)(biuret)(NO3)2] (I) and [H2(Ph-terpy)(NO3)]2[NpO2(NO3)4] (II) have been synthesized and structurally characterized. The coordination environment of Np atoms in compounds are distorted hexagonal bipyramids with “yl” oxygen atoms in apical positions. The equatorial plane of the bipyramid in complex I is formed by oxygen atoms of two bidentate NO 3anions and an electroneutral ligand. The equatorial plane of the bipyramid in II is formed by oxygen atoms of two bidentate and two monodentate NO 3anions. The twice protonated Ph-terpy is the basis of the complex cation [H2(Ph-terpy)(NO3)]+.

Texto integral

Acesso é fechado

Sobre autores

I. Charushnikova

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: charushnikovai@ipc.rssi.ru
Rússia, Leninskii pr. 31, korp. 4, Moscow, 119071

M. Grigoriev

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: charushnikovai@ipc.rssi.ru
Rússia, Leninskii pr. 31, korp. 4, Moscow, 119071

A. Fedoseev

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: charushnikovai@ipc.rssi.ru
Rússia, Leninskii pr. 31, korp. 4, Moscow, 119071

Bibliografia

  1. Gentile P.S., Campisi L.S. // J. Inorg. Nucl. Chem. 1965. Vol. 27. N11. P. 2291–2300.
  2. Zarli B., Dall’olio G., Sindellari L. // J. Inorg. Nucl. Chem. 1976. Vol. 38. N3. P. 491–494.
  3. Seminara A., Musumeci A., Chisari A. // J. Inorg. Nucl. Chem. 1978. Vol. 40. N2. P. 269–274.
  4. Suzuki T., Takao K., Kawasaki T., Harada M., Nogami M., Ikeda Y. // Polyhedron 2015. Vol. 96. P. 102–106.
  5. Костюк Н.Н. // Радиохимия 2005. Т. 47. № 2. P. 136–139.
  6. Андреев Г.Б., Буданцева Н.А., Федосеев А.М. // Радиохимия. 2015. Т. 57. № 5. С. 400–405.
  7. Heller A., Barkleit A., Bernhard G., Ackermann J.-U. // Inorg. Chim. Acta. 2009. Vol. 362. N4. P. 1215–1222.
  8. Berny F., Wipff G. // J. Chem. Soc., Perkin Trans. 2. 2001. P. 73–82.
  9. Серёжкина Л.Б., Григорьев М.С. Рогалёва Е.Ф., Федосеев А.М., Серёжкин В.Н. // Радиохимия. 2021. Т. 63. № 3. С. 275–235.
  10. Sanyal R.M., Ansari B.J., Srivastava P.C., Banerjee B.K., Chakraburtty // Fert. Technol. 1979. Vol. 16. N1. P. 36–38.
  11. Kelley S.P., Rogers R.D. // Inorg. Chem. 2015. Vol. 54. N21. 10323–10334.
  12. Savinkina E.V., Golubev D.V., Grigoriev M.S., Kornilov A.V. // J. Mol. Struct. 2021. Vol. 1227. Article 129526.
  13. Корнилов А.Д., Григорьев М.С., Савинкина Е.В. // Тонкие хи. технологии. 2022. Т. 17. № 2. С. 172–181.
  14. Fedoseev A.M., Grigoriev M.S., Charushnikova I.A., Budantseva N.A., Stanetskaya N.M., Tyurin V.S. // Inorg. Chem. 2021. Vol. 60. N3. P. 1857–1868.
  15. Fedoseev A., Charushnikova I., Budantseva N., Andreev G. // Z. Anorg. Allg. Chem. 2019. Vol. 645. N22. P. 1296–1302.
  16. Sheldrick G.M. SADABS. Madison, Wisconsin (USA): Bruker AXS, 2008.
  17. Sheldrick G.M. // Acta Crystallogr. Sect. A. 2008. Vol. 64. N1. P. 112–122.
  18. Sheldrick G.M. // Acta Crystallogr. Sect. C. 2015. Vol. 71. N1, P. 3–8.
  19. Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. // J. Appl. Crystallogr. 2009. Vol. 42. N2. P. 339–341.
  20. Bradley A.E., Hardacre C., Nieuwenhuyzen M., Pitner W.R., Sanders D., Seddon K.R., Thied R.C. // Inorg. Chem. 2004. Vol. 43. N8. P. 2503–2514.
  21. Беломестных В.И., Свешникова Л.Б., Михайлов Ю.Н., Канищева А.С., Горбунова Ю.Е. // ЖНХ. 2004. Т. 49. № 7. С. 1110–1116.
  22. Беломестных В.И., Свешникова Л.Б., Чураков А.В., Канищева А.С., Михайлов Ю.Н. // ЖНХ. 2011. Т. 56. № 12. С. 1987–1995.
  23. Lewis F.W., Harwood L.M., Hudson M.J., Drew M.G.B., Sypula M., Modolo G., Whittaker D., Sharrad C.A., Videva V., Hubscher-Bruder V., Arnaud-Neu F. // Dalton Trans. 2012. Vol. 41. N30. P. 9209–9219.
  24. Gurzhiy V.V., Tyumentseva O.S., Kornyakov I.V. // Crystals. 2020. Vol. 10. N12. Article 1122.
  25. Irish D.E., Pursel R., Taylor N.J., Toogood G.E. // Acta Crystallogr. Sect. C. 1985. Vol. 41. N7. P. 1012–1013.
  26. Thuéry P., Harrowfield J. // Eur. J. Inorg. Chem. 2018. Vol. 40. P. 4465–4471.
  27. Blatov V.A., Shevchenko A.P., Proserpio D.M. // Cryst. Growth Des. 2014. Vol. 14. N7. P. 3576–3586.
  28. Серёжкин В.Н., Савченков А.В., Сидоренко Г.В., Серёжкина Л.Б. // Радиохимия. 2019. Т. 61. N4. С. 297–307.
  29. Charushnikova I.A., Den Auwer C. // Russ. J. Coord. Chem. 2004. Vol. 30. N7. P. 511–519.
  30. Berthon С., Grigoriev M.S. // Acta Crystallogr. Sect. E. 2005. Vol. 61. N5. P. o1216–o1217.
  31. Junk P.C., Kepert C.J., Semenova L.I., Skelton B.W., White A.H. // Z. Anorg. Allg. Chem. 2006. Vol. 632. N7. P. 1293–1302.
  32. Буданцева Н.А., Андреев Г.Б., Федосеев А.М., Антипин М.Ю., Крупа Ж.К. // Кристаллография. 2003. Т. 48. № 1. С. 63–65.
  33. Fedoseev A.M., Andreev G.B., Budantseva N.A., Krupa J.-C. // J. Nucl. Sci. Technol. 2002. Suppl. 3. P. 414–417.
  34. Budantseva N.A., Andreev G.B., Fedosseev A.M., Bessonov A.A., Antipin M. Yu., Krupa J.-C. // Сompt. Rend. Chim. 2005. Vol. 8. P. 91–95.
  35. Andreev G., Budantseva N. // ChemistrySelect. 2020. Vol. 5. N44. P. 14217–14222.
  36. Grigoriev M.S., Charushnikova I.A., Fedoseev A.M. // Radiochim. Acta. 2023. Vol. 111. N1. P. 43–52.
  37. Grigoriev M.S., Charushnikova I.A., Fedoseev A.M. // Radiochim. Acta. 2023. Vol. 111. N5. P. 333–342.
  38. Steiner T. // Chem. Commun. 1997. N8. P. 727–734.
  39. van den Berg J.-A., Seddon K.R. // Cryst. Growth Des. 2003. Vol. 3. N5. P. 643–661.
  40. Janiak C. // J. Chem. Soc., Dalton Trans. 2000. P. 3885–3889.
  41. Hunter C.A., Lawson K.R., Perkins J., Urch C.J. // J. Chem. Soc., Perkin Trans. 2. 2001. P. 651–669.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Fragment of structure I. Ellipsoids of temperature shifts are given with a 50% probability. The symmetry operation a is (1–x, y, 3/2–z).

Baixar (175KB)
3. Fig. 2. Fragment of structure II. Ellipsoids of temperature shifts are given with a 50% probability. The symmetry operation a is (1–x, 1–y, 1–z).

Baixar (143KB)
4. Fig. 3. Packing of molecules in structure I.

Baixar (268KB)
5. Fig. 4. Packing of molecules in structure II. Projection in the direction of [001].

Baixar (190KB)
6. Fig. 5. π-π Interaction between [H2Ph-terpy]2+cations in structure II.The hydrogen atoms are not shown.

Baixar (99KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024