Some Features of Scattering of a Plane ElectromaElectromagnetic Wave on a Plane Magnetodielectric Plate
- Authors: Borisov D.A.1,2, Skobelev S.P.1,2
-
Affiliations:
- Moscow Institute of Physics and Technology (National Research University
- PJSC Radiophysics
- Issue: Vol 68, No 8 (2023)
- Pages: 742-750
- Section: К 100-ЛЕТИЮ Б.В. СЕСТРОРЕЦКОГО
- URL: https://ruspoj.com/0033-8494/article/view/650482
- DOI: https://doi.org/10.31857/S0033849423080041
- EDN: https://elibrary.ru/UWOWVB
- ID: 650482
Cite item
Abstract
The two-dimensional problem of scattering of a plane electromagnetic wave on a flat homogeneous magnetodielectric plate of finite dimensions is considered. The problem is solved by the method of integral equations for auxiliary surface currents. Algebraization of integral equations was carried out using the collocation method and overlapping three-step basis functions. The results characterizing the efficiency of the proposed algorithm are presented. The influence of the geometric and material parameters of the plate on its effective scattering surface (ESS) in the direction of wave incidence, which characterizes the effects of “invisibility” of the plate, is studied. It is shown that the minimum of the specified ESS is achieved at a plate thickness close to the thickness that ensures the in-phase geometry of the geometric-optical rays that have passed through the plate and the rays that have passed by the plate. The ESS of a plate made of a material with positive and negative refractive indices is compared.
About the authors
D. A. Borisov
Moscow Institute of Physics and Technology (National Research University; PJSC Radiophysics
Email: s.p.skobelev@mail.ru
Moscow oblast, Dolgoprudny, 141701 Russia; Moscow, 125363 Russia
S. P. Skobelev
Moscow Institute of Physics and Technology (National Research University; PJSC Radiophysics
Author for correspondence.
Email: s.p.skobelev@mail.ru
Moscow oblast, Dolgoprudny, 141701 Russia; Moscow, 125363 Russia
References
- Theory and Phenomena of Metamaterials. Ed. F. Capolino. N.Y.: Tailor & Francis Group, 2009.
- Cui T.J., Smith D.R., Liu R.P. Metamaterials: Theory, Design, and Applications. N.Y.: Springer, 2010.
- Веселаго В.Г. // Успехи физ. наук. 1967. Т. 92. № 3. С. 517.
- Kwon D.-H., Werner D.H. // IEEE Antennas & Propagation Magazine. 2010. V. 52. № 1. P. 24.
- Hendi A., Henn J., Leonhardt U. // Phys. Rev. Lett. 2006. V. 97. № 7. P. 073902.
- Minano J.C. // Opt. Express. 2006. V. 14. № 21. P. 9627.
- Скобелев С.П. // Радиотехника. 2017. № 10. С. 30.
- Смольникова О.Н., Скобелев С.П. // Оптика и спектроскопия. 2018. Т. 125. № 1. С. 85.
- Skobelev S.P. // IEEE Trans. 2019. V. 67. № 4. P. 2095.
- Бреховских Л.М. Волны в слоистых средах. 2-е изд. М.: Наука, 1973.
- Солодухов В.В., Васильев Е.Н. // ЖТФ. 1970. Т. 40. № 1. С. 47.
- Chew W.C., Tong M.S., Hu B. Integral Equation Methods for Electromagnetic and Elastic Waves. Kentfield: Morgan & Claypool, 2009.
- Gibson W.C. The Method of Moments in Electromagnetics. 2nd ed.Boca Raton: Chapman and Hall/CRC, 2014.
- Mautz J.R. // IEEE Trans. 1989. V. AP-37. № 8. P. 1070.
- Harrington R.F. // J. Electromagnetic Waves and Appl. 1989. V. 3. № 1. P. 1.
- Борисов Д.А., Скобелев С.П. // Физические основы приборостроения. 2021. Т. 10. № 3. С. 105.
- Leviatan Y., Boag Am. // IEEE Trans. 1987. V. AP-35. № 10. P. 1119.
- Leviatan Y., Boag Am., Boag Al. // IEEE Trans. 1988. V. AP-36. № 7. P. 1026.
- Eisler S., Leviatan Y. // IEE Proc. H. 1989. V. 136. № 6. P. 431.
- Harrington R.F. Field Computation by Moment Methods. N.Y.: IEEE Press, 1993.
- Курушин А.А. Проектирование СВЧ устройств в CST Studio Suite. М.: Салон-Пресс, 2018.
- Balanis C.A. Advanced Engineering Electromagnetics. 2nd ed. N.Y.: John Wiley and Sons, Inc, 2012.
Supplementary files
