Magnetocaloric Materials for Low-Temperature Magnetic Cooling

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

State of research in the study of magnetocaloric materials based on rare-earth metals that are promising for application in the technology of low-temperature magnetic cooling is reviewed. Physical principles and characteristics of the magnetocaloric effect in materials based on rare-earth metals with low-temperature magnetic phase transitions are presented.

About the authors

Yu. S. Koshkid’ko

Institute of Low Temperature and Structure Research, Polish Academy of Science; Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences

Email: y.koshkidko@intibs.pl
Wroclaw, 50-422 Poland; Moscow, 125009 Russia

E. T. Dilmieva

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences

Email: y.koshkidko@intibs.pl
Moscow, 125009 Russia;

A. P. Kamantsev

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences

Email: y.koshkidko@intibs.pl
Moscow, 125009 Russia;

A. V. Mashirov

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences

Email: y.koshkidko@intibs.pl
Moscow, 125009 Russia

J. Cwik

Institute of Low Temperature and Structure Research, Polish Academy of Science

Email: y.koshkidko@intibs.pl
Wroclaw, 50-422 Poland

N. B. Kol’chugina

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: y.koshkidko@intibs.pl
Moscow, 119334 Russia

V. V. Koledov

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences

Email: y.koshkidko@intibs.pl
Moscow, 125009 Russia

V. G. Shavrov

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences

Author for correspondence.
Email: y.koshkidko@intibs.pl
Moscow, 125009 Russia

References

  1. Giauque W.F. // J. Amer. Chem. Soc. 1927. V. 49. № 8. P. 1864. https://doi.org/10.1021/ja01407a003
  2. Белов К.П. Магнитотепловые явления в редкоземельных магнетиках. М.: Наука, 1990.
  3. Никитин С.А. Магнитные свойства редкоземельных металлов и их сплавов. М.: Изд-во МГУ, 1989.
  4. Tishin A.M., Spichkin Y.I. The Magnetocaloric Effect and its Applications. Bristol: IOP Publishing, 2003.
  5. Андреенко А.С., Белов К.П., Никитин С.А., Тишин А.М. // Успехи физ. наук. 1989. Т. 158. № 4. С. 553.
  6. Gschneidner Jr. K.A., Pecharsky V.K., Tsokol A.O. // Reports on Progress in Physics. 2005. V. 68. № 6. P. 1479.https://doi.org/10.1088/0034-4885/68/6/R04
  7. Khovaylo V., Taskaev S. // Encyclopedia of Smart Materials. 2022. V. 5. P. 407. https://doi.org/10.1016/B978-0-12-815732-9.00132-7
  8. Kitanovski A. // Adv. Energy Mater. 2020. V. 10. № 10. Article No.1903741. https://doi.org/10.1002/aenm.201903741
  9. Lyubina J. // J. Phys. D: Appl. Phys. 2017. V. 50. № 5. Article No. 053002. https://doi.org/10.1088/1361-6463/50/5/053002
  10. Zhang H., Gimaev R., Kovalev B. et al. // Physica B: Cond. Matt. 2019. V. 558. P. 65. https://doi.org/10.1016/j.physb.2019.01.035
  11. Liu W., Bykov E., Taskaev S. et al. // Appl. Mater. Today. 2022. V. 29. № 10. P. 101624. https://doi.org/10.1016/j.apmt.2022.101624
  12. Park I., Jeong S. // Cryogenics. 2017. V. 88. P. 106. https://doi.org/10.1016/j.cryogenics.2017.09.008
  13. Numazawa T., Kamiya K., Utaki T., Matsumoto K. // Cryogenics. 2014. V. 62. P. 185. https://doi.org/10.1016/j.cryogenics.2014.03.016
  14. Zhang H., Sun Y.J., Niu E. et al. // Appl. Phys. Lett. 2013. V. 103. № 20. P. 202412. https://doi.org/10.1063/1.4832218
  15. Gallo C.F. // J. Appl. Phys. 1965. V. 36. № 11. P. 3410. https://doi.org/10.1063/1.1703007
  16. Фегер А., Янош С., Петрович П. и др. // ФНТ. 1978. Т.4. № 10. С. 1305.
  17. Ratnalingam R., Sousa J.B. // Phys. Lett. A. 1969. V. 30. № 1. P. 8. https://doi.org/10.1016/0375-9601(69)90007-3
  18. Timmerhaus K.D., Reed R.P. Cryogenic Engineering: Fifty Years of Progress. N. Y.: Springer Science & Business Media, 2007.
  19. Gimaev R.R., Komlev A.S., Davydov A.S. et al. // Crystals. 2021 V. 11. № 2. Article No. 82. https://doi.org/10.3390/cryst11020082
  20. Суслов Д.А., Шавров В.Г., Коледов В.В. и др.// Челябинский физико-математический журн. 2020. Т. 5. № 4. Ч. 2. С. 612. https://doi.org/10.47475/2500-0101-2020-15420
  21. Koshkid’ko Y., Pandey S., Quetz A. et al. // J. Alloys Compounds. 2017. V. 695. P. 3348. https://doi.org/10.1016/j.jallcom.2016.12.032
  22. Konoplyuk S.M., Mashirov A.V., Kamantsev A.P. et al. // IEEE Trans. 2018. V. MAG-54. № 1. Article No. 2500204. https://doi.org/10.1109/TMAG.2017.2761322
  23. Соколовский В.В., Начинова Д.В., Бучельников В.Д. и др. // Челябинский физико-математический журн. 2020. Т. 5. № 4. Ч. 1. С. 493.https://doi.org/10.47475/2500-0101-2020-15409
  24. Кошкидько Ю.С., Пастушенков Ю.Г., Семенова Е.М., Иванова Т.И. // Перспективные материалы. 2008. Т. S6-1. С. 81.
  25. Zheng X.Q., Xu Z.Y., Zhang B., Hu F.X., Shen B.G. // J. Magn. Magn. Mater. 2017. V. 421. P. 448. https://doi.org/10.1016/j.jmmm.2016.08.048
  26. Кошкидько Ю.С. Анизотропия магнитокалорического эффекта монокристаллов соединений 3d- и 4f-металлов в области магнитных фазовых переходов. Дис. … канд. физ.-мат. наук. Тверь: Твер. гос. ун-т, 2011. 162 с.
  27. Nikitin S.A., Skokov K.P., Koshkid’ko Yu.S. et al. // Phys. Rev. Lett. 2010. V. 105. № 13. P. 137205. https://doi.org/10.1103/PhysRevLett.105.137205
  28. Koshkid’ko Y.S. Skokov K.P., Pastushenkov Yu.G. et al. // Solid State Phenomena. 2011. V. 168–169. P. 134. https://doi.org/10.4028/www.scientific.net/SSP.168-169.134
  29. Skokov K.P. Pastushenkov Y.G., Koshkid’ko Y.S. et al. // J. Magn. Magn. Mater. 2011. V. 323. P. 447. https://doi.org/10.1016/j.jmmm.2010.09.044
  30. Nikitin S.A., Ivanova T.I., Zvonov A.I. et al. // Acta Mater. 2018. V. 161. P. 331. https://doi.org/10.1016/j.actamat.2018.09.017
  31. Wang K., Zhang M., Liu J. et al. // J. Appl. Phys. 2019. V. 125. № 24. P. 243901. https://doi.org/10.1063/1.5093708
  32. Никитин С.А., Андреенко А.С., Тишин А.М. и др. // ФММ. 1985. Т. 60. № 4. С. 689.
  33. Никитин С.А. Андреенко А.С., Тишин А.М. и др. // ФММ. 1985. Т. 59. № 1. С. 327.
  34. Тейлор К., Дарби М. Физика редкоземельных соединений. М.: Мир, 1974.
  35. Zimm C.B., Barclay J.A., Harkness H.H. et al. // Cryogenics. 1989. V. 29. № 9. P. 937. https://doi.org/10.1016/0011-2275(89)90210-5
  36. Zimm C.B., Ratzmann P.M., Barclay J.A. et al. // Adv. Cryogenic Eng. Mater. 1990. V. 36. Pts. A, B. P. 763. https://doi.org/10.1007/978-1-4613-9880-6_99
  37. Koshkid’ko Y.S., Ćwik J., Ivanova T.I. et al. // J. Magn. Magn. Mater. 2017. V. 433. P. 234. https://doi.org/10.1016/j.jmmm.2017.03.027
  38. Koshkid’ko Yu.S., Dilmieva E.T., Kamantsev A.P. et al. // J. Alloys Compounds. 2022. V. 905. Article No. 164051. https://doi.org/10.1016/j.jallcom.2022.164051
  39. Koshkid'ko Y.S, Dilmieva E.T., Ćwik J. et al. // J. Alloys Compounds. 2019. V. 798. P. 810. https://doi.org/10.1016/j.jallcom.2019.05.246
  40. Белов К.П., Эффекты парапроцесса в ферримагнетиках и антиферромагнетиках. М.: Физматлит, 2001.
  41. Dan’kov S.Yu., Tishin A.M., Pecharsky V.K., Gschneidner Jr. K.A. // Phys. Rev. B. 1998. V. 57. № 6. P. 3478. https://doi.org/10.1103/PhysRevB.57.3478
  42. Pecharsky V.K., Gschneidner K.A., Jr. // J. Appl. Phys. 1999. V. 86. № 1. P. 565. https://doi.org/10.1063/1.370767
  43. Kamantsev A.P., Koledov V.V., Mashirov A.V. et al. // Solid State Phenom. 2015. V. 233–234. P. 216. https://doi.org/10.4028/www.scientific.net/SSP.233-234.216
  44. Aliev A.M., Batdalov A.B., Khanov L.N. et al. // Appl. Phys. Lett. 2016. V. 109. № 20. P. 202407. https://doi.org/10.1063/1.4968241
  45. Gopal B.R., Chahine R., Bose T.K. // Rev. Sci. Instrum. 1997. V. 68. № 4. P. 1818. https://doi.org/10.1063/1.1147999
  46. Liu J.Y., Zheng Z.G., Lei L. et al. // Rev. Sci. Instrum. 2020. V. 91. № 6. P. 065102. https://doi.org/10.1063/1.5128949
  47. Zavareh M.G., Skourski Y., Skokov K.P. et al. // Phys. Rev. Appl. 2017. V. 8. № 1. P. 014037. https://doi.org/10.1103/PhysRevApplied.8.014037
  48. Kihara T., Xu X., Ito W. et al. // Phys. Rev. B. 2014. V. 90. № 21. P. 214409. https://doi.org/10.1103/PhysRevB.90.214409
  49. Cugini F., Orsi D., Brück E., Solzi M. // Appl. Phys. Lett. 2018. V. 113. № 23. P. 232405. https://doi.org/10.1063/1.5061929
  50. Gottschall T., Kuz’min M.D., Skokov K.P. et al. // Phys. Rev. B. 2019. V. 99. № 13. P. 134429. https://doi.org/10.1103/PhysRevB.99.134429
  51. Kamantsev A.P., Koledov V.V., Mashirov A.V. et al. // J. Magn. Magn. Mater. 2017. V. 440. P. 70. https://doi.org/10.1016/j.jmmm.2016.12.063
  52. Khmelevskyi S., Mohn P. // J. Phys.: Cond. Matt. 2000. V. 12. № 45. P. 9453. https://doi.org/10.1088/0953-8984/12/45/308
  53. Nikitin S.A., Tishin A.M. // Cryogenics. 1991. V. 31. № 3. P. 166. https://doi.org/10.1016/0011-2275(91)90171-R
  54. Ćwik J., Koshkid’ko Y., de Oliveira N.A. et al. // Acta Mater. 2017. V. 133. P. 230. https://doi.org/10.1016/j.actamat.2017.05.054
  55. von Ranke P.J., de Oliveira N.A., Tovar Costa M.V. et al. // J. Magn. Magn. Mater. 2001. V. 226. P. 970. https://doi.org/10.1016/S0304-8853(00)01162-8
  56. Dan’kov Yu.S., Ivtchenko V.V., Tishin A.M. et al. // Adv. Cryogenic Eng. Mater. 2000. V. 46. P. 397. https://doi.org/10.1007/978-1-4615-4293-3_51
  57. Matsumoto K., Asamato K., Nishimura Y. et al. // J. Phys.: Conf. Ser. 2012. V. 400. № 5. P. 052020. https://doi.org/10.1088/1742-6596/400/5/052020
  58. Patra M., Majumdar S., Giri S. et al. // J. Phys.: Cond. Matt. 2014. V. 26. № 4. P. 046004. https://doi.org/10.1088/0953-8984/26/4/046004
  59. von Ranke P.J., Pecharsky V.K., Gschneidner K.A., Jr. // Phys. Rev. B. 1998. V. 58. № 18. P. 12110. https://doi.org/10.1103/PhysRevB.58.12110
  60. Zuo W., Hu F., Sun J., Shen B. // J. Alloys Compounds. 2013. V. 575. P. 162. https://doi.org/10.1016/j.jallcom.2013.03.185
  61. Ćwik J., Koshkid’ko Y., Nenkov K. et al. // J. Alloys Compounds. 2018. V. 735. P. 1088. https://doi.org/10.1016/j.jallcom.2017.11.194
  62. Tomokiyo A., Yayama H., Wakabayashi H. et al. // Adv. Cryogenic Eng. Mater. 1986. V. 32. P. 295.
  63. Zheng X.Q., Xu Z.Y., Zhang B. et al. // J. Magn. Magn. Mater. 2017. V. 421. P. 448. https://doi.org/10.1016/j.jmmm.2016.08.048
  64. Ivanova T.I., Nikitin S.A., Tskhadadze G.A. et al. // J. Alloys Compounds. 2014. V. 592. P. 271. https://doi.org/10.1016/j.jallcom.2013.12.171
  65. Tishin M.A. // Handbook on Magnetic Materials. 1999. V. 12. P. 395. https://doi.org/10.1016/S1567-2719(99)12008-0
  66. Duc N.H., Kim Anh D.T. // J. Magn. Magn. Mater. 2002. V. 242. P. 873. https://doi.org/10.1016/S0304-8853(01)01328-2
  67. Sánchez Llamazares J.L., Ibarra-Gaytán P., Sánchez-Valdés C.F. et al. // J. Rare Earths. 2020. V. 38. № 6. P. 612. https://doi.org/10.1016/j.jre.2019.07.011
  68. Oesterreicher H., Parker F.T. // J. Appl. Phys. 1984. V. 55. № 12. P. 4334. https://doi.org/10.1063/1.333046
  69. Belo J.H., Amaral J.S., Pereira A.M. et al. // Appl. Phys. Lett. 2012. V. 100. № 24. P. 242407. https://doi.org/10.1063/1.4726110
  70. Taskaev S., Khovaylo V., Skokov K. et al. // J. Appl. Phys. 2020. V. 127. № 23. P. 233906. https://doi.org/10.1063/5.0006281
  71. Wada H., Tanabe Y., Shiga M. et al. // J. Alloys. Compounds. 2001. V. 316. P. 245. https://doi.org/10.1016/S0925-8388(00)01305-0
  72. Gschneidner K.A., Pecharsky V.K., Malik S.K. // Adv. Cryogenics Eng. Mater. 1996. V. 42. P. 475. https://doi.org/10.1007/978-1-4757-9059-7_63
  73. Cwik J., Koshkid’ko Y., Nenkov K. et al. // Phys. Rev. B. 2021. V. 103. № 21. P. 214429. https://doi.org/10.1103/PhysRevB.103.214429
  74. Bykov E., Liu W., Skokov K., Scheibel F. et al. // Phys. Rev. Mater. 2021. V. 5. № 9. P. 095405. https://doi.org/10.1103/PhysRevMaterials.5.095405
  75. Ćwik J., Koshkid’ko Y., Nenkov K. et al. // J. Alloys. Compounds. 2021. V. 859. Article No. 157870. https://doi.org/10.1016/j.jallcom.2020.157870
  76. Alho B.P., Lopes P.H.O., Ribeiro P.O. et al. // J. Magn. Magn. Mater. 2018. V. 449. P. 308. https://doi.org/10.1016/j.jmmm.2017.10.044
  77. de Oliveira N.A., von Ranke P.J. // Solid State Commun. 2007. V. 144. P. 103. https://doi.org/10.1016/j.ssc.2007.08.018
  78. Ćwik J., Koshkid’ko Y., Nenkov K. et al. // Sci. Reports. 2022. V. 12. P. 12332. https://doi.org/10.1038/s41598-022-16738-7
  79. Ćwik J., Koshkid’ko Y., Nenkov K. et al. // Crystals. 2022. V. 12. № 7. Article No. 931. https://doi.org/10.3390/cryst12070931
  80. Ribeiro P.O., Alho B.P., Alvarenga T.S.T. et al. // J. Magn. Magn. Mater. 2015. V. 379. P. 112. https://doi.org/10.1016/j.jmmm.2014.12.023
  81. Ribeiro P.O., Alho B.P., Alvarenga T.S.T. et al. // J. Alloys. Compounds. 2013. V. 563. P. 242. https://doi.org/10.1016/j.jallcom.2013.02.068
  82. Ćwik J., Koshkid’ko Y., Małecka M., et al. // J. Alloys. Compounds. 2021. V. 886. Article No. 161295. https://doi.org/10.1016/j.jallcom.2021.161295
  83. Sánchez Llamazares J.L., Zamora J., Sánchez-Valdés C.F., Álvarez-Alonso P. // J. Alloys. Compounds. 2020. V. 831. Article No. 154779. https://doi.org/10.1016/j.jallcom.2020.154779
  84. Hashinomoto T., Kuzuhara T., Matsumoto K. et al. // IEEE Trans. 1987. V. MAG-23. № 5. P. 2847. https://doi.org/10.1109/TMAG.1987.1065717
  85. Sánchez Llamazares J.L., Ibarra-Gaytán P., Sánchez-Valdés C.F. et al. // Intermetallics. 2017. V. 88. P. 41. https://doi.org/10.1016/j.intermet.2017.05.001
  86. Marcos J.S., Rodriguez Fernandez J., Chevalier B. et al. // J. Magn. Magn. Mater. 2004. V. 272. P. 579. https://doi.org/10.1016/j.jmmm.2003.11.225
  87. Rajivgandhi R., Arout Chelvane J., Nirmala R. // AIP Conf. Proc. 2017. V. 1832. № 13. P. 130059. https://doi.org/10.1063/1.4980779
  88. Karmakar S.K., Giri S., Majumdar S. // J. Appl. Phys. 2015. V. 117. № 19. P. 193904. https://doi.org/10.1063/1.4921360
  89. Arora P., Tiwari P., Sathe V.G., Chattopadhyay M.K. // J. Magn. Magn. Mater. 2009. V. 321. P. 3278. https://doi.org/10.1016/j.jmmm.2009.05.062
  90. Cwik J., Koshkid’ko Y., Kolchugina N. et al. // Acta Mater. 2019. V. 173. P. 27. https://doi.org/10.1016/j.actamat.2019.04.056
  91. von Ranke P.J., E.P Nóbrega, de Oliveira I.G. et al. // Phys. Rev. B. 2001. V. 63. № 18. P. 184406. https://doi.org/10.1103/PhysRevB.63.184406
  92. Gschneisdner Jr. K.A., Pecharsky V.K. // Annual Rev. Mater. Sci. 2000. V. 30. P. 387. https://doi.org/10.1146/annurev.matsci.30.1.387
  93. Мишин Д.Д. Магнитные материалы. М.: Высш. школа, 1991.
  94. Кандаурова Г.С. // Соросов. образоват. журн. 1997. № 1. С. 100.
  95. Anand A., Manjuladevi M., Veena R.K. et al. // J. Magn. Magn. Mater. 2021. V. 528. Article No. 167810. https://doi.org/10.1016/j.jmmm.2021.167810

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (67KB)

Copyright (c) 2023 Ю.С. Кошкидько, Э.Т. Дильмиева, А.П. Каманцев, А.В. Маширов, Я. Цвик, Н.Б. Кольчугина, В.В. Коледов, В.Г. Шавров