Research of the efficiency of Kravchenko weighting functions and combinations based on them in the problem of narrow band interference rejection

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The influence of weight functions (WFs) of preliminary weighting on the quality of narrowband interference rejection based on direct and inverse discrete Fourier transforms has been studied. Classical and modern WFs are considered: Kravchenko, Kravchenko–Dolph–Chebyshev, Kravchenko–Gauss, Kravchenko–Bernstein–Rogozinsky. Quantitative estimates of efficiency were obtained – the coefficients of interference suppression and signal transmission, as well as their product – the total efficiency coefficient. Graphic examples of the behavior of the total efficiency coefficient depending on the interference frequency are shown. Estimates of the indicated quality indicators are presented when a fixed number of frequency samples are removed from the spectrum. The families of dependences of the probabilities of correctly performing a search for a spread spectrum signal on the “interference/signal” ratio when using modern WFs to weigh the implementations of an additive mixture of signal, interference and noise are presented. The significant advantage of modern WFs formed through combinations with Kravchenko functions in the problem of interference rejection has been demonstrated and confirmed.

Full Text

Restricted Access

About the authors

E. V. Kuzmin

Siberian Federal University

Author for correspondence.
Email: ekuzmin@sfu-kras.ru
Russian Federation, Krasnoyarsk

References

  1. Кравченко В.Ф., Назаров Л.Е., Пустовойт В.И. // РЭ. 2019. Т. 64. № 10. С. 976.
  2. Кравченко В.Ф., Назаров Л.Е., Пустовойт В.И. // Докл. РАН. Математика, информатика, процессы управления. 2020. Т. 495. С. 95.
  3. Назаров Л.Е. // Журн. радиоэлектроники. 2021. № 12. http://jre.cplire.ru/jre/dec21/2/text.pdf https://doi.org/10.30898/1684-1719.2021.12.2
  4. Кузьмин Е.В. // Цифровая обработка сигналов. 2021. № 4. С. 16.
  5. Кузьмин Е.В., Зограф Ф.Г. // РЭ. 2022. Т. 67. № 8. С. 774.
  6. Назаров Л.Е. // Журн. радиоэлектроники. 2022. № 8. http://jre.cplire.ru/jre/aug22/1/text.pdf https://doi.org/10.30898/1684-1719.2022.8.1
  7. Кузьмин Е.В. // Цифровая обработка сигналов. 2023. № 1. С. 48.
  8. Тузов Г.И., Сивов В.А., Прытков В.И. и др. Помехозащищенность радиосистем со сложными сигналами. М.: Радио и связь, 1985.
  9. Витязев В.В. Цифровая частотная селекция сигналов. М.: Радио и связь, 1993.
  10. ГЛОНАСС. Принципы построения и функционирования / Под ред. А.И. Перова, В.Н. Харисова. М.: Радиотехника, 2010.
  11. Davidovici S., Kanterakis E.G. // IEEE Trans. 1989. V. Com-37. № 7. P. 713.
  12. Борисов В.И., Зинчук В.М., Лимарев А.Е. и др. Помехозащищенность систем радиосвязи с расширением спектра сигналов модуляцией несущей псевдослучайной последовательностью. М.: Радио и связь, 2003.
  13. Шилов А.И., Бакитько Р.В., Польщиков В.П., Хацкелевич Я.Д. // Радиотехника. 2005. № 7. С. 31.
  14. Бакитько Р.В., Польщиков В.П., Шилов А.И., Хацкелевич Я.Д., Болденков Е.Н. // Радиотехника. 2006. № 6. С. 13.
  15. Кравченко В.Ф., Пустовойт В.И. // ДАН. 2002. Т. 386. № 1. С. 38.
  16. Дворкович В.П., Дворкович А.В. Оконные функции для гармонического анализа сигналов. М.: Техносфера, 2016.
  17. Будунова К.А., Кравченко В.Ф. // Физические основы приборостроения. 2022. Т. 11. № 1(43). С. 2.
  18. Марпл-мл. С.Л. Цифровой спектральный анализ и его приложения. М.: Мир, 1990.
  19. Ширман Я.Д., Манжос В.Н. Теория и техника обработки радиолокационной информации на фоне помех. М.: Радио и связь, 1981.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependences of the total coefficient of rejection efficiency of the UP on the normalized frequency when removing Nуд = 50 frequency samples; weighting of the implementation of the Hanna VF (1) and the Kravchenko VF: (2), (3), (4).

Download (153KB)
3. Fig. 2. Dependences of the total coefficient of rejection efficiency of the UP on the normalized frequency when removing Nуд = 50 frequency samples; weighting of the Dolph–Chebyshev waveform implementation and a sine window: ДЧ5(1), sine window (2), ДЧ3.5(3), ДЧ3(4).

Download (167KB)
4. Fig. 3. Dependences of the total rejection efficiency coefficient of the UP on the normalized frequency; weighting of the Kaiser VF implementation: β = 6, Nуд = 50 (1) and 10 (2); β = 5, Nуд = 50 (3) and 10 (4).

Download (134KB)
5. Fig. 4. Dependences of the total coefficient of rejection efficiency of the UP on the normalized frequency when removing Nуд = 50 frequency samples; weighting of the implementation of the VF (1), Parzen (2), (3) and (4).

Download (130KB)
6. Fig. 5. Dependences of the total coefficient of rejection efficiency of the UP on the normalized frequency when removing Nуд = 50 frequency samples; weighting of the implementation of the VF (1), (2), Henning (3), (4), (5).

Download (115KB)
7. Fig. 6. Dependences of the FM-SRS transmission coefficient on the normalized frequency with a removal of Nуд = 50 frequency samples; weighting of the VF DC5(1) and (2).

Download (92KB)
8. Fig. 7. Dependences of the FM-SRS transmission coefficient on the normalized frequency with a removal of Nуд = 50 frequency samples; weighting of the VF (1) and (2).

Download (90KB)
9. Fig. 8. Dependences of the probability of correct execution of the search by the FM-SRS delay, observed against the background of the UP and noise, on the “interference/signal” ratio at qep = 45 dBHz, M = 1: FM-SRS search without partial dispersion (curve 1); single WF at Nуд = 10 (2, 3) and 50 (4, 5); WF K4DCh5 (6, 7), Henning WF (8), (9), (10) at Nуд = 50; fixed interference frequency – 1, 2, 4, 6, random – 3, 5, 7 and 8–10.

Download (89KB)
10. Fig. 9. Dependences of the probability of correct execution of the search by FM-SRS delay, observed against the background of UP and noise, on the “interference/signal” ratio at qep = 45 dBHz, M = 5, Nуд = 50: VF K4DCH5 (1, 2); Henning (3, 4); (5, 6); (7, 8); odd curves correspond to a fixed interference frequency, even curves – to a random one.

Download (89KB)

Copyright (c) 2024 Russian Academy of Sciences