Single-channel magnonic demultiplexer based on a transversely confined coupled waveguide and a Mach–Zehnder interferometer
- Authors: Moshkov V.A.1, Martyshkin A.A.1, Sadovnikov A.V.1
-
Affiliations:
- Saratov National Research State University named after N.G. Chernyshevsky
- Issue: Vol 70, No 4 (2025)
- Pages: 412-417
- Section: TO THE 70th ANNIVERSARY OF S.A. NIKITOV
- URL: https://ruspoj.com/0033-8494/article/view/687515
- DOI: https://doi.org/10.31857/S0033849425040114
- EDN: https://elibrary.ru/FRRQXQ
- ID: 687515
Cite item
Abstract
The propagation of spin waves in a system composed of a Mach–Zehnder interferometer (MZI) and a transversally confined waveguide based on yttrium iron garnet has been investigated. Micromagnetic simulations demonstrate the possibility of using the system as a single-channel demultiplexer for spin-wave signals. It is shown that the distance between the MZI and the transversally confined waveguide, as well as variations in the waveguide width, affect both the phase shift of the propagating signal and the coupling efficiency in the interaction region. The demultiplexing characteristics of the structure are presented, revealing its potential for spatial–frequency signal selection. The proposed coupled waveguide–MZI system provides a basis for the implementation of logic operations and may be employed in integrated circuits based on magnonic principles.
Keywords
Full Text

About the authors
V. A. Moshkov
Saratov National Research State University named after N.G. Chernyshevsky
Author for correspondence.
Email: moshkovva2003@gmail.com
Russian Federation, Astrakhanskaya Str., 83, Saratov, 410012
A. A. Martyshkin
Saratov National Research State University named after N.G. Chernyshevsky
Email: moshkovva2003@gmail.com
Russian Federation, Astrakhanskaya Str., 83, Saratov, 410012
A. V. Sadovnikov
Saratov National Research State University named after N.G. Chernyshevsky
Email: moshkovva2003@gmail.com
Russian Federation, Astrakhanskaya Str., 83, Saratov, 410012
References
- Flebus B., Grundler D., Rana B. et al. // J. Phys.: Cond. Matt. 2024. V. 36. № 36. P. 363501.
- Demidov V.E., Urazhdin S., Anane A. et al. // J. Appl. Phys. 2020. V. 127. № 17. P. 170901.
- Thiery N., Naletov V.V., Vila L. et al. // Phys. Rev. B. 2018. V. 97. № 6. P. 064422.
- Hикитов С.А., Сафин А.Р., Калябин Д.В. и др. // Успехи физ. наук. 2020. Т. 190. № 10. С. 1009.
- Kruglyak V.V., Demokritov S.O., Grundler D. // J. Phys. D: Appl. Phys. 2010. V. 43. № 26. P. 264001.
- Xивинцев Ю.В., Сахаров В.К., Высоцкий С.Л. и др. // ЖТФ. 2018. Т. 88. № 7. С. 1060.
- Sadovnikov A.V., Beginin E.N., Sheshukova S.E. et al. // Phys. Rev. B. 2019. V. 99. № 5. P. 054424.
- Cherepanov V., Kolokolov I., L’vov V. // Phys. Reports. 1993. V. 229. № 3. P. 81.
- Glass H.L. // Proc. IEEE. 1988. V. 76. № 2. P. 151.
- Serrao C.R., Sahu J.R., Ramesha K., Rao C.N.R. // J. Appl. Phys. 2008. V. 104. № 1. P. 016102.
- Chumak A.V., Kabos P., Wu M. et al. // IEEE Trans. 2022. V. MAG-58. № 6. Article No. 0800172.
- Stancil D.D., Prabhakar A. Spin Waves. N. Y.: Springer, 2009.
- Arsad A.Z., Zuhdi A.W.M., Ibrahim N.B., Hannan M.A. // Appl. Sciences. 2023. V. 13. № 2. P. 1218.
- Khitun A., Krivorotov I. Spintronics Handbook. Second Edition: Spin Transport and Magnetism / Eds. by E. Y. Tsymbal, I. Žutić. Boca Raton: CRC Press, 2019. V. 3. P. 571.
- Csaba G., Papp Á., Porod W. // Phys. Lett. A. 2017. V. 381. № 17. P. 1471.
- Schneider T., Serga A.A., Leven B. et al. // Appl. Phys. Lett. 2008. V. 92. № 2.
- Cеменов А.С., Смирнов В.Л., Шмалько А.В. Интегральная оптика для систем передачи и обработки информации. М.: Связь, 1990.
- Shastri B.J., Tait A.N., Ferreira de Lima T. et al. // Nature Photonics. 2021. V. 15. № 2. P. 102.
- Vogt K., Fradin F.Y., Pearson J.E. et al. // Nature Commun. 2014. V. 5. № 1. P. 3727.
- Martyshkin A.A., Davies C.S., Sadovnikov A.V. // Phys. Rev. Appl. 2022. V. 18. № 6. P. 064093.
- Davies C.S., Sadovnikov A.V., Grishin S.V. et al. // IEEE Trans. 2015. V. MAG- 51. № 11. Article No. 3401904.
- Brächer T., Pirro P., Westermann J. et al. // Appl. Phys. Lett. 2013. V. 102. № 13. P. 132411.
- Demidov V.E., Rekers P., Mahrov B., Demokritov S.O. // Appl. Phys. Lett. 2006. V. 89. № 21. P. 212501.
- Sadovnikov A.V., Grachev A.A., Sheshukova S.E. et al. // Phys. Rev. Lett. 2018. V. 120. № 25. P. 257203.
- Demokritov S.O., Serga A.A., André A. et al. // Phys. Rev. Lett. 2004. V. 93. № 4. P. 047201.
- Grachev A.A., Sadovnikov A.V., Nikitov S.A. // Nanomaterials. 2022. V. 12. № 9. P. 1520.
- Dunaev S.N., Fetisov Y.K. // IEEE Trans. 1995. V. MAG-31. № 6. P. 3488.
- Fetisov Y.K., Srinivasan G. // Appl. Phys. Lett. 2006. V. 88. № 14. P. 143503.
- Martyshkin A.A., Sadovnikov A.V. // J. Magn. Magn. Mater. 2024. V. 595. Article No. 171644.
- Гуревич А.Г., Мелков Г.А. Магнитные колебания и волны. М.: Физматгиз, 1994.
- Vansteenkiste A., Leliaert J., Dvornik M. et al. // AIP Advances. 2014. V. 4. № 10. P. 107133.
- O’Keeffe T.W., Patterson R.W. // J. Appl. Phys. 1978. V. 49. № 9. P. 4886.
- Damon R.W., Eshbach J.R. // J. Phys. Chem. Solids. 1961. V. 19. № 3–4. P. 308.
Supplementary files
