Effect of an inviscid nonconducting liquid on the absorption of Lamb waves in piezoelectric plates

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The dependence of the Lamb wave attenuation due to radiation into an inviscid nonconducting liquid (radiation losses) on 1) the ratio of the phase velocities of the waves in the plate Vn and the liquid VL and on 2) the ratio of the vertical component of the surface displacement U3 to the horizontal U1 in the wave of the considered number n has been experimentally investigated. It is shown that the dominant value in the formation of radiation losses is U3/U1: for small U3/U1  1, the emission of Lamb waves into a liquid and the magnitude of radiation losses are small even at Vn  VL, for large U3/U1 ≥ 1, radiation into a liquid and the magnitude of radiation losses are large and can reach values comparable to with those for surface acoustic waves in the same material (~5 dB/mm). The dependence of the Lamb wave attenuation on the ratio of the velocities Vn and VL is much weaker.

About the authors

N. A. Ageykin

Kotelnikov Institute of Radioengineering and Electronics RAS

Email: anis@cplire.ru
Mohovaya str., 11, build. 7, Moscow, 125009

V. I. Anisimkin

Kotelnikov Institute of Radioengineering and Electronics RAS

Mohovaya str., 11, build. 7, Moscow, 125009

A. V. Smirnov

Kotelnikov Institute of Radioengineering and Electronics RAS

Mohovaya str., 11, build. 7, Moscow, 125009

References

  1. Фрайден Дж. Мир электроники. Современные датчики. Справочник. М.: Техносфера, 2006.
  2. Викторов И.А. / Физические основы применения ультразвуковых волн Рэлея и Лэмба в технике. М.: Наука, 1966.
  3. Kuznetsova I.E., Zaitsev B.D., Borodina I.A. et al. // Ultrasonics. 2004. V. 42. № 1–9. P. 179.
  4. Smirnov A., Anisimkin V., Voronova N. et al. // Sensors. 2022. V. 22. № 19. Article No. 7231.
  5. Caliendo C. // Sensors. 2015. V. 15. № 6. P. 12841. https://doi.org/10.3390/s150612841
  6. Terakawa Y., Kondoh J. // Jap. J. Appl. Phys. 2020. V. 59. № SK. Article No. SKKC08.
  7. White R.M., Wicher P.J., Wenzel S.W., Zellers E.T. // IEEE Trans. 1987. V. UFFC-34. № 2. P. 162.
  8. Кузнецова И.Е., Зайцев Б.Д., Джоши С.Г., Теплых А.А. // Акуст. журн. 2007. Т. 53. № 5. С. 637.
  9. Anisimkin I.V., Anisimkin V.I. // IEEE Trans. 2006. V. UFFC-53. № 8. P. 1487.
  10. Hamidullah M., Elie-Caille C., Leblois T. // J. Phys. D: Appl. Phys. 2022. V. 55. № 9. P. 094003.
  11. Mansoorzare H., Shahraini S., Todi A. et al. // IEEE Trans. 2020. V. UFFC-67. № 6. P. 1210.
  12. Anisimkin V., Shamsutdinova E., Li P. et al. // Sensors 2022. V. 22. № 7. Article No. 2727.
  13. Anisimkin V.I., Voronova N.V. // Ultrasonics. 2021. V. 116. Article No. 106496.
  14. Anisimkin V., Kolesov V., Kuznetsova A. et al. // Sensors. 2021. V. 21. № 3. Article No. 919.
  15. Агейкин Н.А., Анисимкин В.И., Воронова Н.В., Смирнов А.В.// РЭ. 2023. Т. 68. № 10. С. 1030.
  16. Smirnov A., Anisimkin V., Ageykin N. et al.// Sensors 2024. V. 24. № 24. Article No. 7969.
  17. Adler E.L., Slaboszewics J.K., Farnell G.W., Jen C.K. // IEEE Trans. 1990. V. UFFC-37. № 3. P. 215.
  18. Slobodnik A.J.Jr., Conway E.D., Delmonico R.T. // J. Acoust. Soc. Amer. 1974. V. 56. № 4. P. 1307.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences