Dimensional resonance of intrinsic stimulated picosecond emission while it induces a photonic crystal and electron population oscillations in heterostructure AlxGa1–xAs–GaAs–AlxGa1–xAs
- Authors: Ageeva N.N.1, Bronevoi I.L.1, Krivonosov A.N.1
-
Affiliations:
- Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences
- Issue: Vol 69, No 2 (2024)
- Pages: 187-198
- Section: ФИЗИЧЕСКИЕ ПРОЦЕССЫ В ЭЛЕКТРОННЫХ ПРИБОРАХ
- URL: https://ruspoj.com/0033-8494/article/view/650714
- DOI: https://doi.org/10.31857/S0033849424020106
- EDN: https://elibrary.ru/KMGYNI
- ID: 650714
Cite item
Abstract
Powerful picosecond optical pumping of the GaAs heterostructure layer causes the generation of stimulated picosecond emission in it. Due to its high intensity, the emission induces a Bragg grating of the electron population in the active region of the layer, making the latter an active photonic crystal. In the emission field, the inverse population of electrons oscillates with time, which should lead to spatiotemporal modulation of the emission and this population. It has been discovered that if the distance Y between the end of the heterostructure and the center of the active medium and the geometric parameters of the indicated modulation and movement of emission in the photonic crystal satisfy certain conditions, then dimensional resonance occurs - a maximum of modulation of the dependence of the energy of emission emerging from the end on Y and on pump energy appears locally.
Full Text

About the authors
N. N. Ageeva
Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences
Email: bil@cplire.ru
Russian Federation, Moscow
I. L. Bronevoi
Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences
Author for correspondence.
Email: bil@cplire.ru
Russian Federation, Moscow
A. N. Krivonosov
Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences
Email: bil@cplire.ru
Russian Federation, Moscow
References
- Агеева Н.Н., Броневой И.Л., Кривоносов А.Н. и др.// ФТП. 2005. Т. 39. № 6. С. 681.
- Агеева Н.Н., Броневой И.Л, Кривоносов А.Н. // ЖЭТФ. 2022. Т. 162. № 6. С. 1018.
- Шадрина Г.В., Булгаков Е.Н. // ЖЭТФ. 2022. Т. 162. Вып. 5. С. 646.
- Peschel T., Peschel U., Lederer F. // Phys. Rev. A. 1994. V.50. P. 5153.
- Агеева Н.Н., Броневой И.Л., Кривоносов А.Н. // РЭ. 2023. Т. 68. № 3. С. 211.
- Васильев П.П. // Квант. электроника. 1994. Т. 21. № 6. С. 585.
- Агеева Н.Н., Броневой И.Л., Забегаев Д.Н., Кривоносов А.Н. // ФТП. 2020. Т. 54. № 10. С. 1018.
Supplementary files
