Dimensional resonance of intrinsic stimulated picosecond emission while it induces a photonic crystal and electron population oscillations in heterostructure AlxGa1–xAs–GaAs–AlxGa1–xAs

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Powerful picosecond optical pumping of the GaAs heterostructure layer causes the generation of stimulated picosecond emission in it. Due to its high intensity, the emission induces a Bragg grating of the electron population in the active region of the layer, making the latter an active photonic crystal. In the emission field, the inverse population of electrons oscillates with time, which should lead to spatiotemporal modulation of the emission and this population. It has been discovered that if the distance Y between the end of the heterostructure and the center of the active medium and the geometric parameters of the indicated modulation and movement of emission in the photonic crystal satisfy certain conditions, then dimensional resonance occurs - a maximum of modulation of the dependence of the energy of emission emerging from the end on Y and on pump energy appears locally.

全文:

受限制的访问

作者简介

N. Ageeva

Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences

Email: bil@cplire.ru
俄罗斯联邦, Moscow

I. Bronevoi

Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: bil@cplire.ru
俄罗斯联邦, Moscow

A. Krivonosov

Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences

Email: bil@cplire.ru
俄罗斯联邦, Moscow

参考

  1. Агеева Н.Н., Броневой И.Л., Кривоносов А.Н. и др.// ФТП. 2005. Т. 39. № 6. С. 681.
  2. Агеева Н.Н., Броневой И.Л, Кривоносов А.Н. // ЖЭТФ. 2022. Т. 162. № 6. С. 1018.
  3. Шадрина Г.В., Булгаков Е.Н. // ЖЭТФ. 2022. Т. 162. Вып. 5. С. 646.
  4. Peschel T., Peschel U., Lederer F. // Phys. Rev. A. 1994. V.50. P. 5153.
  5. Агеева Н.Н., Броневой И.Л., Кривоносов А.Н. // РЭ. 2023. Т. 68. № 3. С. 211.
  6. Васильев П.П. // Квант. электроника. 1994. Т. 21. № 6. С. 585.
  7. Агеева Н.Н., Броневой И.Л., Забегаев Д.Н., Кривоносов А.Н. // ФТП. 2020. Т. 54. № 10. С. 1018.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Dependence of the radiation energy WΣ, integrated over the spectrum, on the change δY of the distance between the center of the active region and the end of the heterostructure at the pump pulse energy Wex: 3.96 (1), 3.75 (2), 3.6 (3), 3.46 (4) and 3.9 rel. units (5). For clarity, the spectra are shifted along the ordinate axis relative to their true position by the value indicated to the right of the curves. The dotted line shows an example of leveling the dependence WΣ(δY). Dependencies 1–4 (left ordinate axis) were measured at the maximum of the radiation pattern, and 5 (right axis) – at its periphery (arrows are explained in the text).

下载 (123KB)
3. Fig. 2. Dependence of the modulation component ΔWs of the spectral component energy of the radiation on δY: with ħω = 1.387 eV at Wex = 3.96 (1), 3.75 (3), 3.6 rel. units (4); with ħω = 1.384 eV at Wex = 3.9 rel. units (2), 3.46 rel. units (5); with ħω = 1.39 eV at Wex = 3.32 rel. units (6). Arrows are explained in the text.

下载 (175KB)
4. Fig. 3. The width of the spectral range Δħωs, which contains significantly modulated dependencies Ws(δY), in the Wex function for measurements at the maximum (1) and at the periphery (2) of the radiation pattern.

下载 (60KB)
5. Fig. 4. Dependence of the radiation energy WΣ on the pump energy Wex at δY = 160 μm; the dotted line shows the linear component of this dependence.

下载 (59KB)
6. Fig. 5. Dependence on Wex of the modulation component ΔWs of the energy of the spectral component of radiation with ħω: 1.387 (1), 1.39 (2), 1.394 (3), 1.398 (4) and 1.403 eV (5).

下载 (117KB)
7. Fig. 6. Schematic representation: a – movements of partial waves of the spectral component of radiation in the GaAs layer towards each other; b – distributions of the population of P electrons in space at moments in time separated by the interval To/4 (1), (2); c – changes in the intensity IR of reflected radiation in space at moments in time separated by the interval To/2 (3), (4).

下载 (125KB)
8. Fig. 7. Change with Wex of the maximum relative value of Md-Σ modulation of the WΣ(δY) dependence for measurements at the maximum (1) and at the periphery (4) of the radiation pattern; the same, but for the depth Md-s of the Ws(δY) dependence of the spectral component of radiation with ħω = 1.387 (2) and 1.384 eV (3). In the inset: a fragment of the Ws(δY) dependence is the solid curve; its smooth component is the dash-dotted line; determination of the Ws-aν energy for formula (6) is the dotted line.

下载 (105KB)
9. Fig. 8. Spectra of the relative height ΔWs/Ws-f of local protrusions on the Ws(δY) dependence at Wex = 3.46 rel. units and δY = 60 (1) and 100 μm (2); Wex = 3.9 rel. units and δY = 120 (3) and 150 μm (4); Wex = 3.96 rel. units and δY = 90 μm (5); the inset shows the determination of the relative height of local protrusions (see the text of the article).

下载 (145KB)
10. Fig. 9. Spectra of the relative magnitude of the maximum (1) and minimum (2) of the ΔWs(Wex) dependence.

下载 (83KB)

版权所有 © Russian Academy of Sciences, 2024